Skip to main content Accessibility help
×
×
Home

Numerical study of the time development of drifting snow and its relation to the spatial development

  • Masaki Nemoto (a1), Kouichi Nishimura (a2), Syunichi Kobayashi (a1) and Kaoru Izumi (a1)

Abstract

The time evolution of drifting snow under a steady wind is estimated using a new numerical model of drifting snow. In the model, Lagrangian stochastic theory is used to incorporate the effect of turbulence on the motion of drifting-snow particles. This method enables us to discuss both the saltation and the suspension process. Aerodynamic entrainment, grain/bed collision (splash process), wind modification and particle size distribution are also taken into account. The calculations show that the time needed by the total mass flux to reach a steady state appears to be 3–5 s. Vertical profiles of horizontal mass flux near the surface show a similar tendency. In contrast, it takes >50 s for the wind speed and the whole mass-flux profile to reach a steady state. This longer time depends on the time-scale of the turbulent diffusion, which is responsible for the mass flux extending to an order of a few meters in height. Applying Taylor’s hypothesis, the estimated length scale at which drifting snow reaches equilibrium is around 400 m. This result is comparable with previously reported field observations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Numerical study of the time development of drifting snow and its relation to the spatial development
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Numerical study of the time development of drifting snow and its relation to the spatial development
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Numerical study of the time development of drifting snow and its relation to the spatial development
      Available formats
      ×

Copyright

References

Hide All
Anderson, R. S. 1987. Eolian sediment transport as a stochastic process: the effects of a fluctuating wind on particle trajectories. J. Geol., 95, 497–512.
Anderson, R. S. and Haff, P.K.. 1988. Simulation of eolian saltation. Science, 241, 820–823.
Anderson, R. S. and Haff, P.K.. 1991. Wind modification and bed response during saltation of sand in air. Acta Mech., Supplementum 1, Aeolian GrainTransport. 1: Mechanics, 21–51.
Bintanja, R. 2000. Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description. Boundary-Layer Meteorol., 95(3), 343–368.
Budd, W. F. 1966. The drifting of non-uniform snow particles. In Rubin, M. J., ed. Studies in Antarctic Meteorology. Washington, DC, American Geophysical Union, 59–70. (Antarctic Research Series 9.)
Butterfield, G. R. 1991. Grain transport rates in steady and unsteady turbulent airflows. Acta Mech., Supplementum 1, Aeolian Grain Transport. 1: Mechanics, 97–122.
Déry, S. J., Taylor, P.A. and Xiao, J.. 1998. The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer. Boundary-Layer Meteorol., 89(2), 251–283.
Gauer, P. 2001. Numerical modeling of blowing and drifting snow in Alpine terrain. J. Glaciol., 47(156), 97–110.
Hunt, J.C.R. and Nalpanis, P.. 1985. Saltating and suspended particles over flat and sloping surfaces. 1. Modelling concepts. In Barndorff-Nielsen, O.E., ed. International Workshop on the Physics of Blown Sand. Proceedings. Vol. 1. Aarhus, University of Aarhus. Institute of Mathematics, 9–35. (Mem. 8).
Kobayashi, D. 1972. Studies of snow transport in low-level drifting snow. Contrib. Inst. Low Temp. Sci., Ser. A 24.
Kosugi, K., Nishimura, K. and Maeno, N.. 1992. Snow ripples and their contribution to the mass transport in drifting snow. Boundary-Layer Meteorol., 59(1–2), 59–66.
Mann, G.W. 1998. Surface heat and water vapour budgets over Antarctica. (Ph.D. thesis, University of Leeds.)
McEwan, I.K. and Willetts, B. B.. 1991. Numerical model of the saltation cloud. Acta Mech., Supplementum 1, Aeolian Grain Transport. 1: Mechanics, 53–66.
McEwan, I.K. and Willetts, B. B.. 1993. Adaptation of the near-surface wind to the development of sand transport. J. Fluid Mech., 252, 99–115.
Morsi, S.A. and Alexander, A. J.. 1972. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech., 55, 193–208.
Naaim-Bouvet, F. and Naaim, M.. 1998. Snowdrift modelling in a wind tunnel: vertical and horizontal variation of the snow flux. Ann. Glaciol., 26, 212–216.
Nemoto, M. 2002. Dynamics of drifting snow particles in turbulent boundary-layer. (Ph.D. thesis, Hokkaido University, Graduate School of Environmental Earth Science.)
Nemoto, M. and Nishimura, K.. 2001. Direct measurement of shear stress during snow saltation. Boundary-Layer Meteorol., 100(1), 149–170.
Nishimura, K. and Hunt, J.C.R.. 2000. Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer. J. Fluid Mech., 417, 77–102.
Nishimura, K., Sugiura, K., Nemoto, M. and Maeno, N.. 1998. Measurements and numerical simulations of snow particle saltation. Ann. Glaciol., 26, 184–190.
Owen, P. R. 1964. Saltation of uniform grains in air. J. Fluid Mech., 20, 225–242.
Sato, T., Uematsu, T. and Kaneda, Y.. 1997. Application of a random walk model to blowing snow. In Izumi, M., T. Nakamura and R. L. Sack, eds. Snow engineering: recent advances, Rotterdam, A. A. Balkema, 133–138.
Shao, Y. and Li, A.. 1999. Numerical modelling of saltation in the atmospheric surface layer. Boundary-Layer Meteorol., 91(2), 199–225.
Shao, Y. and Raupach, M.R.. 1992. The overshoot and equilibration of saltation. J. Geophys. Res., 97(D18), 20, 559–20, 564.
Sugiura, K. and Maeno, N.. 2000. Wind-tunnel measurements of restitution coefficients and ejection number of snow particles in drifting snow: determination of splash functions. Boundary-LayerMeteorol., 95(1), 123–143.
Sugiura, K., Nishimura, K., Maeno, N. and Kimura, T.. 1998. Measurements of snow mass flux and transport rate at different particle diameters in drifting snow. Cold Regions Sci. Technol., 27, 83–89.
Sundsbø, P.A., and Hansen, E.W.M.. 1997. Modelling and numerical simulation of snowdrift around snow fences. In Izumi, M., T. Nakamura and R. L. Sack, eds. Snow engineering: recent advances, Rotterdam, A. A. Balkema, 353–359.
Takeuchi, M. 1980. Vertical profile and horizontal increase of drift snow transport. J. Glaciol., 26(94), 481–492.
Taylor, P. A., Li, P.Y. and Wilson, J.D., 2002. Lagrangian simulation of suspended particles in the neutrally stratified surface boundary layer. J. Geophys. Res., 107(D24), 4762.
Wilson, J.D. and Sawford, B. L., 1996. Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Boundary-LayerMe-teorol., 78(3-4), 191–210.
Xiao, J. and Taylor, P. A., 2002. On equilibrium profiles of suspended particles. Boundary-Layer Meteorol., 105(3), 471–482.
Xiao, J., Bintanja, R., Déry, S. J., Mann, G.W. and Taylor, P.A., 2000. An intercomparison among four models of blowing snow. Boundary-Layer Me-teorol., 97(1), 109–135.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed