Skip to main content Accessibility help
×
Home

Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes

  • David E. Gwyther (a1) (a2), Eva A. Cougnon (a1) (a2) (a3), Benjamin K. Galton-Fenzi (a2) (a4), Jason L. Roberts (a2) (a4), John R. Hunter (a2) and Michael S. Dinniman (a5)...

Abstract

We present simulation results from a version of the Regional Ocean Modeling System modified for ice shelf/ocean interaction, including the parameterisation of basal melting by molecular diffusion alone. Simulations investigate the differences in melting for an idealised ice shelf experiencing a range of cold to hot ocean cavity conditions. Both the pattern of melt and the location of maximum melt shift due to changes in the buoyancy-driven circulation, in a different way to previous studies. Tidal forcing increases both the circulation strength and melting, with the strongest impact on the cold cavity case. Our results highlight the importance of including a complete melt parameterisation and tidal forcing. In response to the 2.4°C ocean warming initially applied to a cold cavity ice shelf, we find that melting will increase by about an order of magnitude (24 × with tides and 41 × without tides).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Arzeno, IB and 7 others (2014) Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. J. Geophys. Res.: Oceans, 119(7), 42144233 (doi: 10.1002/2014JC009792)
Cougnon, EA, Galton-Fenzi, BK, Meijers, AJS and Legrésy, B (2013) Modelling inter-annual dense shelf water export in the region of the Mertz Glacier Tongue (1992–2007). J. Geophys. Res.: Oceans, 118, 58585872 (doi: 10.1002/2013JC008790)
Dansereau, V, Heimbach, P and Losch, M (2014) Simulation of subice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction. J. Geophys. Res.: Oceans, 119(3), 17651790 (doi: 10.1002/2013JC008846)
Depoorter, MA and 6 others (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502(7469), 8992 (doi: 10.1038/nature12567)
Dinniman, MS, Klinck, JM and Smith, WO (2007) Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. J. Geophys. Res., 112(C11), C11013 (doi: 10.1029/2006JC004036)
Dupont, TK and Alley, RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett., 32(4), 14 (doi: 10.1029/2004GL022024)
Galton-Fenzi, BK (2009) Modelling Ice-Shelf/Ocean Interaction. (Ph.D. thesis, University of Tasmania)
Galton-Fenzi, BK, Hunter, JR, Coleman, R, Marsland, SJ and Warner, RC (2012) Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res., 117(C9), C09031 (doi: 10.1029/2012JC008214)
Gladish, CV, Holland, DM, Holland, PR and Price, SF (2012) Iceshelf basal channels in a coupled ice/ocean model. J. Glaciol., 58(212), 12271244 (doi: 10.3189/2012JoG12J003)
Goldberg, DN and 5 others (2012) Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings. J. Geophys. Res., 117(F2), F02038 (doi: 10.1029/2011JF002247)
Grosfeld, K, Gerdes, R and Determann, J (1997) Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean. J. Geophys. Res., 102(C7), 15595 (doi: 10.1029/97JC00891)
Gwyther, DE, Galton-Fenzi, BK, Hunter, JR and Roberts, JL (2014) Simulated melt rates for the Totten and Dalton ice shelves. Ocean Sci., 10(3), 267279 (doi: 10.5194/os-10-267-2014)
Gwyther, DE, Galton-Fenzi, BK, Dinniman, MS, Roberts, JL and Hunter, JR (2015) The effect of basal friction on melting and freezing in ice shelf–ocean models. Ocean Model., 95, 3852 (doi: 10.1016/j.ocemod.2015.09.004)
Hellmer, HH and Olbers, DJ (1989) A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1(4), 325336
Hellmer, HH, Kauker, F, Timmermann, R, Determann, J and Rae, J (2012) Twenty-first-century warming of a large Antarctic iceshelf cavity by a redirected coastal current. Nature, 485(7397), 225228 (doi: 10.1038/nature11064)
Holland, PR (2008) A model of tidally dominated ocean processes near ice shelf grounding lines. J. Geophys. Res.: Oceans, 113(11), 115 (doi: 10.1029/2007JC004576)
Holland, DM and Jenkins, A (1999) Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29(8), 17871800 (doi: “10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2”)
Holland, DM, Jacobs, SS and Jenkins, A (2003) Modelling the ocean circulation beneath the Ross Ice Shelf. Antarct. Sci., 15(1), 1323 (doi: 10.1017/S0954102003001019)
Holland, PR, Jenkins, A and Holland, DM (2008) The response of ice shelf basal melting to variations in ocean temperature. J. Clim., 21(11), 25582572 (doi: 10.1175/2007JCLI1909.1)
Hunter, JR (2006) Specification for Test Models of Ice Shelf Cavities. Technical Report June, Antarctic Climate & Ecosystems Cooperative Research Centre
Jacobs, SS, Hellmer, H, Doake, CSM, Jenkins, A and Frolich, RM (1992) Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38(130), 375387
Jacobs, SS, Jenkins, A, Giulivi, CF and Dutrieux, P (2011) Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4(8), 519523 (doi: 10.1038/ngeo1188)
Jenkins, A, Nicholls, KW and Corr, HFJ (2010) Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr., 40(10), 22982312 (doi: 10.1175/2010JPO4317.1)
Joughin, I, Alley, RB and Holland, DM (2012) Ice-sheet response to oceanic forcing. Science, 338(6111), 11721176 (doi: 10.1126/science.1226481)
Kader, BA and Yaglom, AM (1972) Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transf., 15(12), 23292351 (doi: 10.1016/0017-9310(72)90131-7)
Keys, HJR, Jacobs, SS and Barnett, D (1990) The calving and drift of iceberg B-9 in the Ross Sea, Antarctica. Antarct. Sci., 2(03), 243257 (doi: 10.1017/S0954102090000335)
Kimura, S, Nicholls, KW and Venables, E (2015) Estimation of ice shelf melt rate in the presence of a thermohaline staircase. J. Phys. Oceanogr., 45(1), 133148 (doi: 10.1175/JPO-D-14-0106.1)
Large, WG, McWilliams, JC and Doney, SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32(4), 363 (doi: 10.1029/94RG01872)
Lewis, EL and Perkin, RG (1986) Ice pumps and their rates. J. Geophys. Res., 91(C10), 1175611762 (doi: 10.1029/JC091iC10p11756)
Little, CM, Gnanadesikan, A and Hallberg, R (2008) Large-scale oceanographic constraints on the distribution of melting and freezing under ice shelves. J. Phys. Oceanogr., 38(10), 22422255 (doi: 10.1175/2008JPO3928.1)
Little, CM, Gnanadesikan, A and Oppenheimer, M (2009) How ice shelf morphology controls basal melting. J. Geophys. Res.: Oceans, 114(12), C12007 (doi: 10.1029/2008JC005197)
Liu, Y and 7 others (2015) Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc. Natl. Acad. Sci., 112(11), 32633268 (doi: 10.1073/pnas.1415137112)
Losch, M (2008) Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res.: Oceans, 113, C08043 (doi: 10.1029/2007JC004368)
Makinson, K, Schröder, M and Østerhus, S (2006) Effect of critical latitude and seasonal stratification on tidal current profiles along Ronne Ice Front, Antarctica. J. Geophys. Res., 111(C3), C03022 (doi: 10.1029/2005JC003062)
Makinson, K, Holland, PR, Jenkins, A, Nicholls, KW and Holland, DM (2011) Influence of tides on melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophys. Res. Lett., 38(6), L06601 (doi: 10.1029/2010GL046462)
McDougall, TJ, Barker, PM, Feistel, R and Galton-Fenzi, BK (2014) Melting of ice and sea ice into seawater and Frazil Ice Formation. J. Phys. Oceanogr., 44(7), 17511775 (doi: 10.1175/JPO-D-13-0253.1)
McPhee, MG (1981) An analytic similarity theory for the planetary boundary layer stabilized by surface buoyancy. Boundary-Layer Meteorol., 21(3), 325339 (doi: 10.1007/BF00119277)
McPhee, MG (1994) On the turbulent mixing length in the oceanic boundary layer. J. Phys. Oceanogr., 24(9), 20142031 (doi: 10.1175/1520-0485(1994)024<2014:OTTMLI>2.0.CO;2)
McPhee, MG, Maykut, GA and Morison, JH (1987) Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res., 92, 70177031 (doi: 10.1029/JC092iC07p07017)
Mueller, RD and 5 others (2012) Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica. J. Geophys. Res., 117, C05005 (doi: 10.1029/2011JC007263)
Rignot, E, Jacobs, S, Mouginot, J and Scheuchl, B (2013) Ice shelf melting around Antarctica. Science, 341(6143), 266270 (doi: 10.1126/science.1235798)
Robertson, R (2013) Tidally induced increases in melting of Amundsen Sea ice shelves. J. Geophys. Res.: Oceans, 118(6), 31383145 (doi: 10.1002/jgrc.20236)
Scambos, TA, Bohlander, JA, Shuman, CA and Skvarca, P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402 (doi: 10.1029/2004GL020670)
Scheduikat, M and Olbers, DJ (1990) A one-dimensional mixed layer model beneath the Ross Ice Shelf with tidally induced vertical mixing. Antarctic Sci., 2(1), 2942 (doi: 10.1017/S0954102090000049)
Shchepetkin, AF and McWilliams, JC (2003) A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108(C3), 134 (doi: 10.1029/2001JC001047)
Shchepetkin, AF and McWilliams, JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model., 9(4), 347404 (doi: 10.1016/j.ocemod.2004.08.002)
Soulsby, RL (1983) The bottom boundary layer of shelf seas. In Johns, B ed. Physical oceanography of coastal and shelf seas. Elsevier Science Publishers B.V., Amsterdam, 189266

Keywords

Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes

  • David E. Gwyther (a1) (a2), Eva A. Cougnon (a1) (a2) (a3), Benjamin K. Galton-Fenzi (a2) (a4), Jason L. Roberts (a2) (a4), John R. Hunter (a2) and Michael S. Dinniman (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed