Skip to main content Accessibility help

The methanesulfonic acid (MSA) record in a Svalbard ice core

  • Elisabeth Isaksson (a1), Teija Kekonen (a2) (a3), John Moore (a2) and Robert Mulvaney (a4)


Svalbard ice cores have not yet been fully exploited for studies of climate and environmental conditions. In one recently drilled ice core from Lomonosovfonna, we have studied the methanesulfonic acid (MSA) records in relation to temperature and sea ice. Under the present climatic conditions, MSA appears to be negatively correlated with the sea-ice conditions in the Barents Sea, and positively correlated with the instrumental temperature record from Svalbard. However, prior to about 1920 the MSA concentrations were about twice as high, despite the more extensive sea-ice coverage. After exploring different possibilities, we suggest that MSA concentrations were higher in the 19th century than in the 20th century due to increased primary production, in response to increased vertical stability of the sea surface layers, caused by increased meltwater production from the more extensive sea-ice cover. Thus, the MSA record from Lomonosovfonna probably both is a measure of the regional sea-ice variability on the multi-decadal scale and reflects locally favorable conditions for marine biogenic dimethyl sulfide (DMS) production on the sub-decadal scale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The methanesulfonic acid (MSA) record in a Svalbard ice core
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The methanesulfonic acid (MSA) record in a Svalbard ice core
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The methanesulfonic acid (MSA) record in a Svalbard ice core
      Available formats



Hide All
Benestad, R., Hanssen-Bauer, I., Skaugen, T.E. and Førland, E.J.. 2002. Associations between sea-ice and the local climate on Svalbard. Oslo, Det Norske Meteorologiske Institutt. (DNMI Klima Report 07/02.)
Chaudhuri, P. and Marron, J.S.. 1999. SiZer for exploration of structures in curves. J. Amer. Stat. Assoc., 94(447), 807823.
Curran, M.A.J., van Ommen, T.D., Morgan, V.I., Phillips, K.L. and Palmer, A.S.. 2003. Ice core evidence for Antarctic sea ice decline since the 1950s. Science, 302(5648), 12031206.
Dickson, R.R. and 8 others. 2000. The Arctic Ocean response to the North Atlantic Oscillation. J. Climate, 13(15), 26712696.
Engelsen, O., Hegseth, E.N., Hop, H., Hansen, H. and Falk-Petersen, S.. 2002. Spatial variability of chlorophyll-a in the marginal ice zone of the Barents Sea, with relations to sea ice and oceanographic conditions. J. Mar. Syst., 35, 7997.
Fischer, H. 2001. Imprint of large-scale atmospheric transport patterns on sea-salt records in northern Greenland ice cores. J. Geophys. Res., 106(D20), 23,97723,984.
Gibson, J.A.E., Garrick, R.C., Burton, H.R. and McTaggart, A.R.. 1989. Dimethylsulphide and the alga (Phaeocystis pouchetii) in Antarctic coastal waters. Marine Biol., 104(2), 339346.
Godtliebsen, F., Olsen, L.R. and Winther, J.G.. 2003. Recent developements in statistical time series analysis: examples of use in climate research. J. Geophys. Res., 30(12), 16541657.
Hansson, M.E. and Saltzman, E.S.. 1993. The first Greenland ice core record of methanesulfonate and sulfate over a full glacial cycle. Geophys. Res. Lett., 20(12), 11631166.
Hara, K., Osada, K., Hayashi, M., Matsunaga, K. and Iwasaka, Y.. 1997. Variation of concentrations of sulfate, methanesulfonate and sulfur dioxide at Ny Ålesund in 1995/96 winter. Proc. NIPR Symp. Polar Meteorol. Glaciol. 11, 127137.
Hisdal, V. 1998. Svalbard nature and history. Oslo, Norsk Polarinstitutt.
Isaksson, E. and 14 others. 2001. A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920–97 data in relation to present climate and environmental conditions. J. Glaciol., 47(157), 335345.
Isaksson, E. and 11 others. 2003. Ice cores from Svalbard – useful archives of past climate and pollution history. Phys. Chem. Earth, 28, 12171228.
Jaffrezo, J.L., Davidson, C.I., Legrand, M. and Dibb, J.E.. 1994. Sulfate and MSA in the air and snow on the Greenland ice sheet. J. Geophys. Res., 99(D1), 12411253.
Jauhiainen, T., Moore, J., Perämäki, P., Derome, J. and Derome, K.. 1999. Simple procedure for ion chromatographic determination of anions and cations at trace levels in ice core samples. Anal. Chim. Acta, 389(1), 2129.
Jones, P.D., Briffa, K.R., Barnett, T.P. and Tett, S.F.B.. 1998. High-resolu-tion palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. The Holocene, 8, 455471.
Kahl, J.D.W., Martinez, D.A., Kuhns, H., Davidson, C.I., Jaffrezo, J.L. and Harris, J.M.. 1997. Air mass trajectories to Summit, Greenland: a 44-year climatology and some episodic events. J. Geophys. Res., 102(C12), 26,86126,875.
Kekonen, T. and 6 others. 2005. The 800 year long ion record from the Lomonosovfonna (Svalbard) ice core. J. Geophys. Res., 110(D7), D07304. (10.1029/2004JD005223.)
Kreutz, K.J., Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I. and Pittalwala, I.I.. 1997. Bipolar changes in atmospheric circulation during the Little Ice Age. Science, 277(5330), 12941296.
Lamb, H.H. 1995. Climate, history and the modern world. Second edition. London/New York, Routledge.
Lancelot, C. and Wassmann, P.. 1994. Dynamics of Phaeocystis-dominated ecosystems. J. Mar. Systems, 5, 1100.
Leck, C. and Persson, C.. 1996. Seasonal and short-term variability in dimethyl sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the Arctic marine boundary layer during summer and autumn. Tellus, 48B(2), 272299.
Legrand, M., Delmas, R.J. and Charlson, R.J.. 1988. Climate forcing implications from Vostok ice-core sulphate data. Nature, 334(6181), 418420.
Legrand, M. and 6 others. 1997. Sulfur-containing species (methanesulfonate and SO4) over the last climatic cycle in the Greenland Ice Core Project (central Greenland) ice core. J. Geophys. Res., 102(C12), 26,66326,679.
Meyerson, E.A., Mayewski, P.A., Kreutz, K.J., Meeker, L.D., Whitlow, S.I. and Twickler, M.S.. 2002. The polar expression of ENSO and sea-ice variability as recorded in a South Pole ice core. Ann. Glaciol., 35, 430436.
Nordli, P.Ø., Hanssen-Bauer, I. and Førland, E.J.. 1996. Homogeneity analyses of temperature and precipitation series from Svalbard and Jan Mayen. Oslo, Det Norske Meteorologiske Institutt. (DNMI Klima Report 16/96.)
Nye, J.F. 1963. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol., 4(36), 785788.
O’Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S. and Whitlow, S.I.. 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270(5244), 19621964.
O’Dwyer, J. and 7 others. 2000. Methanesulfonic acid in a Svalbard ice core as an indicator of ocean climate. Geophys. Res. Lett., 27(8), 11591162.
Pasteur, E.C. and Mulvaney, R.. 1999. Laboratory study of the migration of methane sulphonate in firn. J. Glaciol., 45(150), 214218.
Pasteur, E.C., Mulvaney, R., Peel, D.A., Saltzman, E.S. and Whung, P.Y.. 1995. A 340 year record of biogenic sulphur from the Weddell Sea area, Antarctica. Ann. Glaciol., 21, 169174.
Pinglot, J.-F. and 6 others. 1999. Investigations of temporal change of the accumulation in Svalbard glaciers deducted from nuclear tests and Chernobyl reference layers. Polar Res., 18(2), 315321.
Pohjola, V. and 7 others. 2002a. Effect of periodic melting on geochemical and isotopic signals in an ice core on Lomonosovfonna, Svalbard. J. Geophys. Res., 107(D4), 4036. (10.1029/ 2000JD000149.)
Pohjola, V.A. and 6 others. 2002b. Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard. Ann. Glaciol., 35, 5762.
Saigne, C. and Legrand, M.. 1987. Measurements of methanesulphonic acid in Antarctic ice. Nature, 330(6145), 240242.
Sakshaug, E. and Walsh, J.. 2000. Marine biology: biomass, productivity distributions and their variability in the Barents and Bering Seas. In Nuttall, M. and Callaghan, T.V., eds. The Arctic: environment, people, policy. Amsterdam, etc., Harwood Academic Publishers, 161196.
Seinfeld, J.H. and Pandis, S.N.. 1998. Atmospheric chemistry and physics: from air pollution to climate change, New York, John Wiley and Sons.
Teinilä, K., Hillamo, R., Kerminen, V.M. and Beine, H.J.. 2003. Aerosol chemistry during the NICE dark and light campaigns. Atmos. Environ., 37(4), 563575.
Vinje, T. 1999. Barents Sea-ice edge variation over the past 400 years. In Workshop on Sea Ice Charts of the Arctic. Proceedings. Geneva, World Meteorological Organization. World Climate Research Programme. (Arctic Climate System Study 4–5.) (Wmo/ Td 949 IAPO Publ. 3.)
Vinje, T. 2001. Anomalies and trends of sea ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J. Climate, 14(2), 255267.
Welch, K.A., Mayewski, P.A. and Whitlow, S.I.. 1993. Methanesulfonic acid in coastal Antarctic snow related to sea ice extent. Geophys. Res. Lett., 20(6), 443446.
Whung, P.Y., Saltzman, E.S., Spencer, M.J., Mayewski, P.A. and Gundestrup, N.. 1994. Two-hundred-year record of biogenic sulfur in a south Greenland ice core (20D). J. Geophys. Res., 99(D1), 11471156.

The methanesulfonic acid (MSA) record in a Svalbard ice core

  • Elisabeth Isaksson (a1), Teija Kekonen (a2) (a3), John Moore (a2) and Robert Mulvaney (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed