Skip to main content Accessibility help
×
Home

Internal structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed by airborne radio-echo sounding

  • Daniel Steinhage (a1), Sepp Kipfstuhl (a1), Uwe Nixdorf (a1) and Heinz Miller (a1)

Abstract

This study aims to demonstrate that deep ice cores can be synchronized using internal horizons in the ice between the drill sites revealed by airborne radio-echo sounding (RES) over a distance of >1000km, despite significant variations in glaciological parameters, such as accumulation rate between the sites. In 2002/03 a profile between the Kohnen station and Dome Fuji deep ice-core drill sites, Antarctica, was completed using airborne RES. The survey reveals several continuous internal horizons in the RES section over a length of 1217 km. The layers allow direct comparison of the deep ice cores drilled at the two stations. In particular, the counterpart of a visible layer observed in the Kohnen station (EDML) ice core at 1054 m depth has been identified in the Dome Fuji ice core at 575 m depth using internal RES horizons. Thus the two ice cores can be synchronized, i.e. the ice at 1560 m depth (at the bottom of the 2003 EDML drilling) is ∼49ka old according to the Dome Fuji age/depth scale, using the traced internal layers presented in this study.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Internal structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed by airborne radio-echo sounding
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Internal structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed by airborne radio-echo sounding
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Internal structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed by airborne radio-echo sounding
      Available formats
      ×

Copyright

References

Hide All
Arthern, RJ, Winebrenner, DP and Vaughan, DG (2006) Antarctic snow accumulation mapped using polarization of 4.3 cm wavelength microwave emission. J. Geophys. Res., 111(D6), D06107 (doi: 10.1029/2004JD005667)
Dahl-Jensen, D and 9 others (1997) A search in north Greenland for a new ice-core drill site. J. Glaciol., 43(144), 300306
Dansgaard, W and Johnsen, SJ (1969) A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol., 8(53), 215223
Eisen, O, Wilhelms, F, Nixdorf, U and Miller, H (2003) Identifying isochrones in GPR profiles from DEP-based forward modeling. Ann. Glaciol., 37, 344350 (doi: 10.3189/172756403781816068)
Eisen, O, Hamann, I, Kipfstuhl, S, Steinhage, D and Wilhelms, F (2007) Direct evidence for continuous radar reflector originating from changes in crystal-orientation fabric. Cryosphere, 1(1), 110
EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444(7116), 195198 (doi: 10.1038/nature05301)
EPICA Dome C 2001–02 Science and Drilling Teams (2002) Extending the ice core record beyond half a million years. Eos, 83(45), 509517 (doi: 10.1029/2002EO000352)
Fahnestock, M, Abdalati, W, Joughin, I, Brozena, J and Gogineni, P (2001) High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294(5550), 23382342 (doi: 10.1126/science.1065370)
Fujii, Y and 8 others (1999) Tephra layers in the Dome Fuji (Antarctica) deep ice core. Ann. Glaciol., 29, 126130 (doi: 10.3189/172756499781821003)
Fujita, S and 6 others (1999) Nature of radio-echo layering in the Antarctic ice sheet detected by a two-frequency experiment. J. Geophys. Res., 104(B6), 1301313024
Haefeli, R (1963) A numerical and experimental method for determining ice motion in the central parts of ice sheets. IASH Publ. 61 (General Assembly of Berkeley 1963 – Snow and Ice), 253260
Hammer, CU (1980) Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes. J. Glaciol., 25(93), 359372
Hammer, CU, Clausen, HB and Langway, CC Jr (1997) 50000 years of recorded global volcanism. Climatic Change, 35(1), 115
Hempel, L, Thyssen, F, Gundestrup, N, Clausen, HB and Miller, H (2000) A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core. J. Glaciol., 46(154), 369374 (doi: 10.3189/172756500781833070)
Huybrechts, P, Steinhage, D, Wilhelms, F and Bamber, J (2000) Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modelling. Ann. Glaciol., 30, 5260 (doi: 10.3189/172756400781820778)
Jouzel, J and 9 others (1989) A comparison of deep Antarctic ice cores and their implications for climate between 65000 and 15 000 years ago. Quat. Res., 31(2), 135150
Jouzel, J, Orombelli, G and Lorius, C (1996) European Project for Ice Coring in Antarctica (EPICA). Terra Antart., 3(1), 4954
Le Brocq, AM, Payne, AJ and Vieli, A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst. Sci. Data, 2(2), 247260 (doi: 10.5194/essdd-3-195-2010)
Moore, JC (1988) Dielectric variability of a 130 m Antarctic ice core: implications for radar sounding. Ann. Glaciol., 11, 9599
Nixdorf, U and 6 others (1999) The newly developed airborne radio-echo sounding system of the AWI as a glaciological tool. Ann. Glaciol., 29, 231238 (doi: 10.3189/172756499781821346)
Nye, JF (1963) Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol., 4(36), 785788
Oerter, H and 6 others (2000) Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores. Ann. Glaciol., 30, 2734 (doi: 10.3189/172756400781820705)
Petit, JR and 18 others (1999) Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429436 (doi: 10.1038/20859)
Rignot, E, Mouginot, J and Scheuchl, B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Ruth, U and 19 others (2007) ‘EDML1’: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Climate Past, 3(3), 475484 (doi: 10.5194/cp-3-475-2007)
Siegert, MJ, Hodgkins, R and Dowdeswell, JA (1998) A chronology for the Dome C deep ice-core site through radio-echo layer correlation with the Vostok ice core, Antarctica. Geophys. Res. Lett., 25(7), 10191022 (doi: 10.1029/98GL00718)
Sommer, S and 9 others (2000) Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica. 1. Annually resolved accumulation rates. J. Geophys. Res., 105(D24), 2941129421 (doi: 10.1029/2000JD900449)
Steinhage, D (2001) Beiträge aus geophysikalischen Messungen in Dronning Maud Land, Antarktis, zur Auffindung eines optimalen Bohrpunktes für eine Eiskerntiefbohrung. Ber. Polar-Meeres-forsch./Rep. Pol. Mar. Res. 384.
Stenni, B and 39 others (2011) Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geosci., 4(1), 4649 (doi: 10.1038/ngeo1026)
Van de Berg, WJ, Van den Broeke, MR, Reijmer, CH and Van Meijgaard, E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11), D11104 (doi: 10.1029/2005JD006495)
Watanabe, O ed. (1997) Antarctica: East Queen Maud Land – Enderby Land: glaciological folio. National Institute of Polar Research, Tokyo http://polaris.nipr.ac.jp/library/publication/Folio/pages/001.html
Watanabe, O, Jouzel, J, Johnsen, S, Parrenin, F, Shoji, H and Yoshida, N (2003) Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature, 422(6931), 509512 (doi: 10.1038/nature01525)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed