Skip to main content Accessibility help
×
Home

Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurements and numerical modeling

  • Wolfgang Rack (a1), Christopher S. M. Doake (a2), Helmut Rott (a1), Andreas Siegel (a1) and Pedro Skvarca (a3)...

Abstract

The motion field of the northern Larsen Ice Shelf, Antarctic Peninsula, was analyzed using radar interferometry in combination with field measurements and finite-element model calculations. The ice shelf between Jason Peninsula and Seal Nunataks has been in steady retreat since January 1995. Model calculations suggest that the ice shelf is in a stage of irreversible retreat since the last calving events in summer 1998/99. The interferometric analysis is based on synthetic-aperture radar data of the tandem mission of European remote-sensing satellites ERS-1 and –2 in austral spring 1995. The phase contributions due to tidal motion were estimated from the vertical displacement at those parts of the grounding zone where the horizontal motion is close to zero" in order to separate the vertical and horizontal motion components over the ice shelf. Satellite-derived velocities compare well with the long-term field measurements along a transverse and a longitudinal profile. The real interferograms and synthetic interferograms, calculated from model velocities, show reasonable agreement over the main parts of the ice shelf, but differ in the boundary zones where the details are not resolved by the model.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurements and numerical modeling
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurements and numerical modeling
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurements and numerical modeling
      Available formats
      ×

Copyright

References

Hide All
Doake, C. S. M., Corr, H. F.J., Rott, H., Skvarca, P. and Young, N.W.. 1998. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature, 391(6669), 778–780.
Joughin, I., Winebrenner, D., Fahnestock, M., Kwok, R. and Krabill, W.. 1996. Measurement of ice-sheet topography using satellite-radar interferometry J. Glaciol., 42(140), 10–22.
Joughin, I R., Kwok, R. and Fahnestock, M. A.. 1998. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans. Geosci. Remote Sensing, GE-36(1), 25–37
MacAyeal, D. R. and Thomas, R. H.. 1982. Numerical modeling of ice-shelf motion. Ann. Glaciol, 3, 189–194.
Mercer, J.H. 1978. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature, 271(5643), 321–325.
Rignot, E. and MacAyeal, D. R.. 1998. Ice-shelf dynamics near the front of the Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometry. J. Glaciol., 44(147), 405–418.
Rott, H., Skvarca, P. and Nagler, T.. 1996. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271(5250), 788–792.
Rott, H., Rack, W., Nagler, T. and Skvarca, P.. 1998. Climatically induced retreat and collapse of northern Larsen Ice Shelf, Antarctic Peninsula. Ann. Glaciol., 27,86–92.
Siegel, A. 1999. Least squares unwrapping with iterative corrections. In IGARSS ’99. 19th International Geoscience and Remote Sensing Symposium, 28 June-2 July 1999, Hamburg, Germany. Proceedings. Vol. 5. Pisacataway, NJ, Institute of Electrical and Electronics Engineers, 2398–2400.
Skvarca, P. 1994. Changes and surface features of the Larsen Ice Shelf, Antarctica, derived from Landsat and Kosmos mosaics. Ann. Glaciol, 20, 6–12.
Skvarca, P., Rack, W., Rott, H. and Ibarzabal y Donangelo, T.. 1998. Evidence of recent climatic warming on the eastern Antarctic Peninsula. Ann. Glaciol., 27, 628–632
Skvarca, P., Rack, W. and Rott, H.. 1999. 34 year satellite time series to monitor characteristics, extent and dynamics of Larsen B Ice Shelf, Antarctic Peninsula. Ann. Glaciol., 29, 255–260.
Vaughan, D. G. and Doake, C. S. M.. 1996. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379(6563), 328–331.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed