Skip to main content Accessibility help
×
×
Home

How much do we really know about glacier surging?

  • William D. Harrison (a1) and Austin S. Post (a2)

Abstract

Some of the ideas about glacier surging are considered, mainly but not entirely in the light of observations of temperate glaciers in Alaska, U.S.A., made within the last 15 years. Climate has an influence on surge recurrence interval. Climate and weather also affect surge initiation, termination and magnitude. Regional studies lead to the speculation that subglacial “till” plays a key role in surging, and it has been found under all surge-type glaciers studied so far, including Black Rapids and Variegated Glaciers, Alaska. In most of the glaciers studied, till deformation processes dominate the motion in quiescence. The linked-cavity model of surge triggering and rapid motion is not consistent with these observations, but the limited coverage of the observations does not rule it out under parts of the glaciers studied. The till observations in Alaska raise old questions about the interaction between till and the hydraulic systems of temperate glaciers. The role of stored water, which observations show to be active even in winter on Black Rapids Glacier, is noted.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How much do we really know about glacier surging?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How much do we really know about glacier surging?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How much do we really know about glacier surging?
      Available formats
      ×

Copyright

References

Hide All
Björnsson, H. 1998. Hydrological characteristics of the drainage system beneath a surging glacier. Nature, 395(6704),771774.
Blake, E.W., Fischer, U. H. and Clarke, G. K. C.. 1994. Direct measurement of sliding at the glacier bed. J. Glaciol., 40(136), 595599.
Boulton, G. S. and Hindmarsh, R. C. A.. 1987. Sediment deformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92(), 90599082.
Boulton, G. S. and Jones, A. S.. 1979. Stability of temperate ice caps and ice sheets resting on beds of deformable sediment. J. Glaciol., 24(90), 2943.
Boulton, G. S., Dobbie, K. E. and Zatsepin, S.. 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quat. Int., 86, 328.
Clarke, G. K. C. 1991. Length, width and slope influences on glacier surging. J. Glaciol., 37(126), 236246.
Clarke, G. K. C. and Blake, E.W.. 1991. Geometric and thermal evolution of a surge-type glacier in its quiescent state: Trapridge Glacier, Yukon Territory, Canada, 1969–89. J. Glaciol., 37(125),158169.
Clarke, G. K. C., Collins, S. G. and Thompson, D. E.. 1984. Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J.Earth Sci., 21(2), 232240.
Dowdeswell, J. A., Hamilton, G. S. and Hagen, J. O.. 1991. The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions. J. Glaciol., 37(127),388400.
Dowdeswell, J. A., Hodgkins, R., Nuttall, A.-M., Hagen, J. O. and Hamilton, G. S.. 1995. Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic. Geophys. Res. Lett., 22(21), 29092912.
Dyurgerov, M. B.,Aizin, V.B. and Buynitskiy, A.B.. 1985. Nakopleniyemassy v oblasti pitaniya lednika Medvezh’yegozaperiody mezhdu yego podvizhkami [Mass accumulation in the accumulation area of Medvezhiy Glacier during its quiescence periods]. Mater. Glyatsiol. Issled. 54,131135.
Eisen, O., Harrison, W. D. and Raymond, C. F.. 2001. The surges of Variegated Glacier, Alaska, U.S.A., and their connection to climate and mass balance. J. Glaciol., 47(158), 351358.
Engelhardt, H. and Kamb, B.. 1998. Basal sliding of Ice Stream B, West Antarctica. J. Glaciol., 44(147), 223230.
Fatland, D. R. 1998. Studies of Bagley Icefield During Surge and Black Rapids Glacier, Alaska, Using Spaceborne SAR Interferometry. (Ph.D. thesis, University of Alaska Fairbanks.)
Fatland, D.R. and Lingle, C. S.. 1998. Analysis of the 1993–95Bering Glacier (Alaska) surge using differential SAR interferometry. J. Glaciol., 44(148), 532546.
Fountain, A. G. and Walder, J. S.. 1998. Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328.
Fowler, A. C., Murray, T. and Ng, F. S. L.. 2001.Thermally controlled glacier surging. J. Glaciol., 47(159), 527538.
Hambrey, M. J., Dowdeswell, J. A., Murray, T. and Porter, P. R.. 1996. Thrusting and debris entrainment in a surging glacier: Bakaninbreen, Svalbard. Ann. Glaciol., 22, 241248.
Hamilton, G. S. and Dowdeswell, J. A.. 1996. Controls on glacier surging in Svalbard. J. Glaciol., 42(140),157168.
Hance, J. H. 1937. The recent advance of Black Rapids Glacier, Alaska. J. Geol., 45(64), 775783.
Harrison, W. D., Kamb, B. and Engelhardt, H.. 1986. Morphology and motion at the bed of a surge-type glacier. [Abstract.] Eidg. Tech. Hochschule, ZüRich. Versuch Sanst. Wasserbau, Hydrol. Glaziol. Mitt. 90, 5556.
Harrison, W. D., Echelmeyer, K. A., Chacho, E.F., Raymond, C. F. and Benedict, R. J.. 1994. The 1987–88 surge of West Fork Glacier, Susitna Basin, Alaska, U.S.A. J. Glaciol., 40(135), 241254.
Heinrichs, T.A., Mayo, L. R., Echelmeyer, K. A. and Harrison, W.D.. 1996. Quiescent-phase evolution of a surge-type glacier: Black Rapids Glacier, Alaska, U.S.A. J. Glaciol.,42(140),110122.
Hoinkes, H. C. 1969. Surges of the Vernagtferner in the Otztal Alps since 1599. Ca N. J. Earth Sci., 6(4, Part 2), 853861.
Humphrey, N. F. and Raymond, C. F.. 1994. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. J. Glaciol., 40(136), 539552.
Iken, A., Rothlisberger, H., Flotron, A. and Haeberli, W.. 1983. The uplift of Unteraargletscher at the beginning of the melt season− a consequence of water storage at the bed? J. Glaciol., 29(101),2847.
Jiskoot, H., Murray, T. and Boyle, P.. 2000. Controls on the distribution of surge-type glaciers in Svalbard. J. Glaciol., 46(154), 412422.
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(), 90839100.
Kamb, B. 2001. Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. in Alley, R. B. and Bindschadler, R. A., eds. The West Antarctic Ice Sheet: Behavior and Environment. Washington, American Geophysical Union, 157199. (Antarctic Research Series 77.)
Kamb, B. and 7 others. 1985. Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469479.
Kamb, B., Engelhardt, H., Fahnestock, M. A., Humphrey, N., Meier, M. and Stone, D.. 1994. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 2. Interpretation. J. Geophys. Res., 99(B8), 15,23115,244.
Kavanaugh, J.L. and Clarke, G. K. C.. 2001. Abrupt glacier motion and reorganization of basal shear stress following the establishment of a connected drainage system. J. Glaciol., 47(158), 472480.
Lingle, C. S. and Fatland, D. R.. 2003. Does englacial water storage drive glacier surges? Ann. Glaciol., 36 (see paper in this volume).
Meier, M. F. and Post, A.. 1969. What are glacier surges? Can. J. Earth Sci.,6(4), Part 2, 807817.
Murray, T. and 6 others. 2000. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res., 105(B6), 13,49113,507.
Nolan, M. and Echelmeyer, K.. 1999a. Seismic detection of transient changes beneath Black Rapids Glacier, Alaska, U.S.A.: I. Techniques and observations. J. Glaciol., 45(149), 119131.
Nolan, M. and Echelmeyer, K..1999b. Seismic detection of transient changes beneath Black Rapids Glacier, Alaska, U.S.A.: II. Basal morphology and processes. J. Glaciol., 45(149), 132146.
Porter, P. R. and Murray, T.. 2001. Mechanical and hydraulic properties of till beneath Bakaninbreen, Svalbard. J. Glaciol., 47(157), 167175.
Post, A. 1969. Distribution of surging glaciers in western North America. J. Glaciol., 8(53), 229240.
Raymond, C. F. 1987. How do glaciers surge? A review. J. Geophys. Res., 92(), 91219134.
Raymond, C. F. and Harrison, W. D.. 1988. Evolution of Variegated Glacier, Alaska, U.S.A., prior to its surge. J. Glaciol., 34(117),154169.
Raymond, C. F., Benedict, R.J., Harrison, W.D., Echelmeyer, K. A. and Sturm, M. DC.1995. Hydrological discharges and motion of Fels and Black Rapids Glaciers, Alaska, U.S.A.: implications for the structure of their drainage systems. J. Glaciol., 41(138), 290304.
Roush, J. J. 1996. The 1993–94 Surge of Bering Glacier, Alaska, Observedwith Satellite Synthetic Aperture Radar. (M.Sc. thesis, University of Alaska Fairbanks.)
Stenborg, T. 1970. Delay of run-off from a glacier basin. Geogr. Ann., 52A(1),130.
Sturm, M. and Cosgrove, D. M.. 1990. Correspondence. An unusual jökulhlaup involving potholes on Black Rapids Glacier, Alaska Range, Alaska, U.S.A. J. Glaciol., 36(122),125126.
Tangborn, W.V., Krimmel, R.M. and Meier, M. F.. 1975. A comparison of glacier mass balance by glaciological, hydrological and mapping methods, South Cascade Glacier, Washington. International Association of Hydrological Sciences Publication 104 (Symposium at Moscow 1971 −snow and ice),185196.
Truffer, M., Motyka, R. J., Harrison, W. D., Echelmeyer, K. A., Fisk, B. and Tulaczyk, S.. 1999. Subglacial drilling at Black Rapids Glacier, Alaska, U.S.A.: drilling method and sample descriptions. J. Glaciol., 45(151), 495505.
Truffer, M., Harrison, W.D. and Echelmeyer, K. A.. 2000. Glacier motion dominated by processes deep in underlying till. J. Glaciol.,46(153), 213221.
Truffer, M., Echelmeyer, K.A. and Harrison, W. D.. 2001. Implications of till deformation on glacier dynamics. J. Glaciol., 47(156),123134.
Wilbur, S.W. 1988. Surging Versus Non-Surging Glaciers: A Comparison Using Morphometry and Balance. (M.Sc. thesis, University of Alaska Fairbanks.)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed