Skip to main content Accessibility help

Glacier sliding, seismicity and sediment entrainment

  • Bradley Paul Lipovsky (a1), Colin R. Meyer (a2), Lucas K. Zoet (a3), Christine McCarthy (a4), Dougal D. Hansen (a3), Alan W. Rempel (a2) and Florent Gimbert (a5)...


The evolution of glaciers and ice sheets depends on processes in the subglacial environment. Shear seismicity along the ice–bed interface provides a window into these processes. Such seismicity requires a rapid loss of strength that is typically ascribed to rate-weakening friction, i.e., decreasing friction with sliding or sliding rate. Many friction experiments have investigated glacial materials at the temperate conditions typical of fast flowing glacier beds. To our knowledge, however, these studies have all found rate-strengthening friction. Here, we investigate the possibility that rate-weakening rock-on-rock friction between sediments frozen to the bottom of the glacier and the underlying water-saturated sediments or bedrock may be responsible for subglacial shear seismicity along temperate glacier beds. We test this ‘entrainment-seismicity hypothesis’ using targeted laboratory experiments and simple models of glacier sliding, seismicity and sediment entrainment. These models suggest that sediment entrainment may be a necessary but not sufficient condition for the occurrence of basal shear seismicity. We propose that stagnation at the Whillans Ice Stream, West Antarctica may be caused by the growth of a frozen fringe of entrained sediment in the ice stream margins. Our results suggest that basal shear seismicity may indicate geomorphic activity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier sliding, seismicity and sediment entrainment
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier sliding, seismicity and sediment entrainment
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier sliding, seismicity and sediment entrainment
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.


Hide All
Acomb, LJ, Mickelson, DM and Evenson, EB (1982) Till stratigraphy and late glacial events in the lake michigan lobe of eastern wisconsin. Geol. Soc. Am. Bull., 93(4), 289296
Alley, RB, Blankenship, DD, Bentley, CR and Rooney, S (1986) Deformation of till beneath ice stream b, west antarctica. Nature, 322(6074), 57
Alley, R, Anandakrishnan, S, Bentley, C and Lord, N (1994) A water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica. Ann. Glaciol., 20, 187194
Allison, KL and Dunham, EM (2018) Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophysics, 733, 232256
Allstadt, K and Malone, SD (2014) Swarms of repeating stick-slip icequakes triggered by snow loading at mount rainier volcano. J. Geophys. Res., Earth Surf., 119(5), 11801203
Anandakrishnan, S and Bentley, CR (1993) Micro-earthquakes beneath Ice Streams B and C, West Antarctica: observations and implications. J. Glaciol., 39(133), 455462
Aster, R and Winberry, J (2017) Glacial seismology. Rep. Prog. Phys., 80(12), 126801
Barcheck, CG, Tulaczyk, S, Schwartz, SY, Walter, JI and Winberry, JP (2018) Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion. Earth. Planet. Sci. Lett., 486, 5460
Barnes, P, Tabor, D and Walker, J (1971) The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. A, Math. Phys. Sci., 324(1557), 127155
Beem, L and 5 others (2014) Variable deceleration of Whillans Ice Stream, West Antarctica. J. Geophys. Res.: Earth Surf., 119(2), 212224
Bindschadler, RA, King, MA, Alley, RB, Anandakrishnan, S and Padman, L (2003) Tidally controlled stick-slip discharge of a west antarctic ice. Science, 301(5636), 10871089
Blake, W, Fischer, UH, Bentley, C and Clarke, GK (1994) Instruments and methods: Direct measurement of sliding at the glacier bed. J. Glaciol., 40(136), 595599
Blankenship, DD, Bentley, CR, Rooney, S and Alley, RB (1986) Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature, 322(6074), 54
Canassy, PD, Röösli, C and Walter, F (2016) Seasonal variations of glacier seismicity at the tongue of rhonegletscher (switzerland) with a focus on basal icequakes. J. Glaciol., 62(231), 1830
Clarke, GK (2005) Subglacial processes. Annu. Rev. Earth Planet. Sci., 33, 247276
Dash, J, Rempel, A and Wettlaufer, J (2006) The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys., 78(3), 695
Dieterich, JH (1978) Time-dependent friction and the mechanics of stick-slip. In Byerlee, JD and Wyss, M eds. Rock Friction and Earthquake Prediction. Springer, Basel, 790806
Dieterich, JH (2007) Applications of rate-and state-dependent friction to models of fault slip and earthquake occurrence. In Schubert, G ed. Treatise on Geophysics, vol. 4, Elsevier, Oxford
Emerson, L and Rempel, A (2007) Thresholds in the sliding resistance of simulated basal ice. Cryosphere Discuss., 1(1), 99122
Goldberg, D, Schoof, C and Sergienko, O (2014) Stick-slip motion of an Antarctic Ice Stream: The effects of viscoelasticity. J. Geophys. Res.: Earth Surf., 119(7), 15641580
Helmstetter, A, Nicolas, B, Comon, P and Gay, M (2015) Basal icequakes recorded beneath an alpine glacier (glacier d'argentière, mont blanc, france): evidence for stick-slip motion?. J. Geophys. Res.: Earth Surf., 120(3), 379401
Hosler, CL, Jensen, D and Goldshlak, L (1957) On the aggregation of ice crystals to form snow. J. Meteorol., 14(5), 415420
Iverson, NR (2010) Shear resistance and continuity of subglacial till: hydrology rules. J. Glaciol., 56(200), 11041114, (doi: 10.3189/002214311796406220)
Kamb, B (1970) Sliding motion of glaciers: theory and observation. Rev. Geophys., 8(4), 673728
Kamb, B (2001) Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, RB and Bindschadler, RA eds. The West Antarctic ice sheet: behavior and environment. Washington, D.C., 157199
Kennedy, F, Schulson, E and Jones, D (2000) The friction of ice on ice at low sliding velocities. Philos. Mag. A, 80(5), 10931110
Leeman, J, Scuderi, MM, Marone, C and Saffer, D (2015) Stiffness evolution of granular layers and the origin of repetitive, slow, stick-slip frictional sliding. Granular Matter, 17(4), 447457
Linker, M and Dieterich, J (1992) Effects of variable normal stress on rock friction: Observations and constitutive equations. J. Geophys. Res.: Solid Earth, 97(B4), 49234940
Lipovsky, BP and Dunham, EM (2016) Tremor during ice-stream stick slip. The Cryosphere, 10(1), 385399
Lipovsky, BP and Dunham, EM (2017) Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law. J. Geophys. Res.: Earth Surf., 122(4), 9731003
Lovell, H and 7 others (2015) Debris entrainment and landform genesis during tidewater glacier surges. J. Geophys. Res.: Earth Surf., 120(8), 15741595
Luthra, T, Anandakrishnan, S, Winberry, JP, Alley, RB and Holschuh, N (2016) Basal characteristics of the main sticky spot on the ice plain of Whillans Ice Stream, Antarctica. Earth. Planet. Sci. Lett., 440, 1219
Maeno, N and Arakawa, M (2004) Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys., 95(1), 134139
Marone, C (1998) Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth. Planet. Sci., 26(1), 643696
McCarthy, C, Savage, H and Nettles, M (2017) Temperature dependence of ice-on-rock friction at realistic glacier conditions. Phil. Trans. R. Soc. A, 375(2086), 20150348
Meyer, CR and Minchew, BM (2018) Temperate ice in the shear margins of the antarctic ice sheet: Controlling processes and preliminary locations. Earth. Planet. Sci. Lett., 498, 1726
Meyer, CR, Downey, AS and Rempel, AW (2018a) Freeze-on limits bed strength beneath sliding glaciers. Nat. Commun., 9(1), 3242
Meyer, CR, Yehya, A, Minchew, B and Rice, JR (2018b) A model for the downstream evolution of temperate ice and subglacial hydrology along ice stream shear margins. J. Geophys. Res.: Earth Surf., 123(8), 16821698
Mitsui, N and Hirahara, K (2001) Viscoelastic simulation of earthquake cycle using a simple spring-dashpot-mass system with a friction law. Geophys. Res. Lett., 28(23), 43914394
Moore, PL (2014) Deformation of debris-ice mixtures. Rev. Geophys., 52(3), 435467
Moore, PL and Iverson, NR (2002) Slow episodic shear of granular materials regulated by dilatant strengthening. Geology, 30(9), 843846
Moore, PL, Iverson, NR and Cohen, D (2010) Conditions for thrust faulting in a glacier. J. Geophys. Res.: Earth Surf., 115(F2), F02005
Morlighem, M, Seroussi, H, Larour, E and Rignot, E (2013) Inversion of basal friction in antarctica using exact and incomplete adjoints of a higher-order model. J. Geophys. Res.: Earth Surf., 118(3), 17461753
Oksanen, P and Keinonen, J (1982) The mechanism of friction of ice. Wear, 78(3), 315324
O'Neill, K and Miller, RD (1985) Exploration of a rigid ice model of frost heave. Water. Resour. Res., 21(3), 281296
Podolskiy, EA and Walter, F (2016) Cryoseismology. Rev. Geophys., 54(4), 708758
Pratt, MJ, Winberry, JP, Wiens, DA, Anandakrishnan, S and Alley, RB (2014) Seismic and geodetic evidence for grounding-line control of whillans ice stream stick-slip events. J. Geophys. Res.: Earth Surf., 119(2), 333348
Rathbun, AP, Marone, C, Alley, RB and Anandakrishnan, S (2008) Laboratory study of the frictional rheology of sheared till. J. Geophys. Res.: Earth Surf., 113(F2), F02020
Rempel, A (2007) Formation of ice lenses and frost heave. J. Geophys. Res.: Earth Surf., 112(F2), F02S21
Rempel, A (2008) A theory for ice-till interactions and sediment entrainment beneath glaciers. J. Geophys. Res.: Earth Surf., 113(F1), F01013
Rempel, AW (2009a) Effective stress profiles and seepage flows beneath glaciers and ice sheets. J. Glaciol., 55(191), 431443
Rempel, AW (2009b) Transient effective stress variations forced by changes in conduit pressure beneath glaciers and ice sheets. Ann. Glaciol., 50(52), 6166
Rempel, AW and Rice, JR (2006) Thermal pressurization and onset of melting in fault zones. J. Geophys. Res.: Solid Earth, 111(B9), B09314
Rempel, A, Wettlaufer, J and Worster, M (2001) Interfacial premelting and the thermomolecular force: thermodynamic buoyancy. Phys. Rev. Lett., 87(8), 088501
Rempel, AW, Wettlaufer, J and Worster, MG (2004) Premelting dynamics in a continuum model of frost heave. J. Fluid. Mech., 498, 227244
Rice, JR (2006) Heating and weakening of faults during earthquake slip. J. Geophys. Res.: Solid Earth, 111(B5), B05311
Rice, J and Ruina, AL (1983) Stability of steady frictional slipping. J. Appl. Mech., 50(2), 343349
Rice, JR, Lapusta, N and Ranjith, K (2001) Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids, 49(9), 18651898
Robin, GdQ (1976) Is the basal ice of a temperate glacier at the pressure melting point?. J. Glaciol., 16(74), 183196
Roeoesli, C, Helmstetter, A, Walter, F and Kissling, E (2016) Meltwater influences on deep stick-slip icequakes near the base of the greenland ice sheet. J. Geophys. Res.: Earth Surf., 121(2), 223240
Sammis, CG and Ben-Zion, Y (2008) Mechanics of grain-size reduction in fault zones. J. Geophys. Res.: Solid Earth, 113(B2), B02306
Scholz, CH (1998) Earthquakes and friction laws. Nature, 391(6662), 37
Schoof, C (2005) The effect of cavitation on glacier sliding. Proc. R. Soc. London A: Math. Phys. Eng. Sci., 461(2055), 609627
Scholz, C and Engelder, J (1976) The role of asperity indentation and ploughing in rock friction—i: Asperity creep and stick-slip. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 13, 149154
Selvadurai, A, Selvadurai, P and Suvorov, A (2018) Contact mechanics of a dilatant region located at a compressed elastic interface. Int. J. Eng. Sci., 133, 144168
Smith, A (1997) Basal conditions on Rutford ice stream, West Antarctica, from seismic observations. J. Geophys. Res.: Solid Earth, 102(B1), 543552
Smith, A (2006) Microearthquakes and subglacial conditions. Geophys. Res. Lett., 33(24), L24501
Smith, E, Smith, A, White, R, Brisbourne, A and Pritchard, H (2015) Mapping the ice-bed interface characteristics of rutford ice stream, west antarctica, using microseismicity. J. Geophys. Res.: Earth Surf., 120(9), 18811894
Thomason, JF and Iverson, NR (2008) A laboratory study of particle ploughing and pore-pressure feedback: a velocity-weakening mechanism for soft glacier beds. J. Glaciol., 54(184), 169181, (doi 10.3189/002214308784409008)
Tulaczyk, SM, Scherer, RP and Clark, CD (2001) A ploughing model for the origin of weak tills beneath ice streams: a qualitative treatment. Quat. Int., 86(1), 5970
van der Veen, CJ and Whillans, I (1989) Force budget: I. theory and numerical methods. J. Glaciol., 35(119), 5360
Viesca, RC and Garagash, DI (2015) Ubiquitous weakening of faults due to thermal pressurization. Nat. Geosci., 8(11), 875
Wiens, DA, Anandakrishnan, S, Winberry, JP and King, MA (2008) Simultaneous teleseismic and geodetic observations of the stick–slip motion of an antarctic ice stream. Nature, 453(7196), 770
Winberry, JP, Anandakrishnan, S, Wiens, DA, Alley, RB and Christianson, K (2011) Dynamics of stick–slip motion, whillans ice stream, antarctica. Earth. Planet. Sci. Lett., 305(3-4), 283289
Winberry, JP, Anandakrishnan, S, Wiens, DA and Alley, RB (2013) Nucleation and seismic tremor associated with the glacial earthquakes of whillans ice stream, antarctica. Geophys. Res. Lett., 40(2), 312315
Zoet, L and 6 others (2013) The effects of entrained debris on the basal sliding stability of a glacier. J. Geophys. Res.: Earth Surf., 118(2), 656666
Zoet, LK and Iverson, NR (2015) Experimental determination of a double-valued drag relationship for glacier sliding. J. Glac., 61(225), 17
Zoet, LK and Iverson, NR (2016) Rate-weakening drag during glacier sliding. J. Geophys. Res.: Earth Surf., 121(7), 12061217
Zoet, LK and Iverson, NR (2018) A healing mechanism for stick-slip of glaciers. Geology, 46(9), 807810
Zoet, LK, Anandakrishnan, S, Alley, RB, Nyblade, AA and Wiens, DA (2012) Motion of an antarctic glacier by repeated tidally modulated earthquakes. Nat. Geosci., 5(9), 623
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed