Skip to main content Accessibility help
×
Home

A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS

  • Keguang Wang (a1), Jens Debernard (a2), Ann Kristin Sperrevik (a2), Pål Erik Isachsen (a2) and Thomas Lavergne (a2)...

Abstract

The Ocean and Sea Ice Satellite Application Facility (OSISAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) distributes satellite observations operationally. In this paper, we describe the development of a combined optimal interpolation and nudging (COIN) scheme in the Norwegian Meteorological Institute that assimilates OSISAF sea-ice concentration (SIC) into a coupled sea-ice–ocean Regional Ocean Modeling System (ROMS). The scheme modifies the modeled SIC at every time-step, based on the difference between observation and forecast as well as on the ratio of observation error to model error. Snow and sea-ice thickness are diagnostically modified to match the ice concentration field. Hindcast experiments of Arctic sea ice are performed for the whole of 2009. The results are compared with OSISAF and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) SIC, showing a significant improvement in the analyzed sea-ice edge and summer SIC.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS
      Available formats
      ×

Copyright

References

Hide All
Andersen, S, Tonboe, R, Kern, S and Schyberg, H (2006) Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms. Remote Sens. Environ.,104(4), 374392 (doi: 10.1016/j.rse.2006.05.013)
Budgell, WP (2005) Numerical simulation of ice–ocean variability in the Barents Sea region towards dynamical downscaling. Ocean Dyn., 55(3–4), 370387 (doi: 10.1007/s10236-005-0008-3)
Caya, A, Buehner, M and Carrieres, T (2010) Analysis and forecasting of sea ice conditions with three-dimensional variation data assimilation and a coupled ice–ocean model. J. Atmos. Ocean. Technol., 27(2), 353369 (doi:/10.1175/2009JTECHO701.1)
Comiso, JC (1986) Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., 91(C1), 975994 (doi: 10.1029/JC091iC01p00975)
Comiso, JC, Parkinson, CL, Gersten, R and Stock, L (2008) Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35(1), L01703 (doi: 10.1029/2007GL031972)
Deutsch, R (1965) Estimation theory. Prentice-Hall, Upper Saddle River, NJ
Eastwood, S, Larsen, KR, Lavergne, T, Neilsen, E and Tonboe, R (2011) OSI SAF global sea ice concentration reprocessing: product user manual, version 1.3. EUMETSAT OSI SAF (Product 0SI-409)
Haas, C, Pfaffling, A, Hendricks, S, Rabenstein, L, Etienne, J-L and Rigor, I (2008) Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat. Geophys. Res. Lett., 35(17), L17501 (doi: 10.1029/2008GL034457)
Haidvogel, DB and 19 others (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227(7), 35953624 (doi: 10.1016/j.jcp.2007.06.016)
Hunke, EC (2001) Viscous–plastic sea ice dynamics with the EVP model: linearization issues. J. Comput. Phys., 170(1), 1838 (doi: 10.1006/jcph.2001.6710)
Hunke, EC and Dukowicz, JK (1997) Anelastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27(9), 18491867
Kwok, R and Rothrock, DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36(15), L15501 (doi: 10.1029/2009GL039035)
Lindsay, RW and Zhang, J (2006) Assimilation of ice concentration in an ice–ocean model. J. Atmos. Ocean. Technol., 23(5), 742749 (doi: 10.1175/JTECH1871.1)
Lisæter, K, Rosanova, J and Evensen, G (2003) Assimilation of ice concentration in a coupled ice–ocean model, using the Ensemble Kalman filter. Ocean Dyn. , 53(4), 368388 (doi: 10.1007/s10236-003-0049-4)
Maslanik, JA, Fowler, C, Stroeve, J, Drobot, S and Zwally, HJ (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive ice loss. Geophys. Res. Lett., 34(24), L24501 (doi: 10.1029/2007GL032043)
Mellor, GL and Kantha, L (1989) An ice–ocean coupled model. J. Geophys. Res., 94(C8), 1093710954 (doi: 10.1029/JC094iC08p10937)
Moore, AM and 9 others (2011) The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part III – observation impact and observation sensitivity in the California Current System. Progr. Oceanogr., 91(1), 7494 (doi: 10.1016/j.pocean.2011.05.005)
Nghiem, SV and 6 others (2006) Depletion of perennial sea ice in the East Arctic Ocean. Geophys. Res. Lett., 33(17), L17501 (doi: 10.1029/2006GL027198)
Nghiem, SV, Rigor, IG, Perovich, DK, Clemente-Colón, P, Weatherly, JW and Neumann, G (2007) Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 34(19), L19504 (doi: 10.1029/2007GL031138)
Semtner, AJ Jr (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6(5), 379389 (doi: 10.1175/1520-0485(1976)006<0379: AMFTTG>2.0.CO;2)
Shchepetkin, AF and McWilliams, JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model., 9(4), 347404 (doi: 10.1016/j.ocemod.2004.08.002)
Smith, DM (1996) Extraction of winter total sea-ice concentration in the Greenland and Barents Sea from SSM/I data. Int. J. Remote Sens., 17(3), 26252646 (doi: 10.1080/01431169608949096)
Song Yand Haidvogel, DB (1994) A semi-implicit ocean circulation model using a generalized topography following coordinate system. J. Comput. Phys., 115(1), 228244 (doi: 10.1006/jcph.1994.1189)
Spreen, G, Kaleschke, L and Heygster, G (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res., 113(C2), C02S03 (doi: 10.1029/2005JC003384)
Stark, JD, Ridley, J, Martin, M and Hines, A (2008) Sea ice concentration and motion assimilation in a sea ice–ocean model. J. Geophys. Res., 113(C5), C05S91 (doi: 10.1029/2007JC004224)
Steele, M, Mellor, GL and McPhee, MG (1989) Role of molecular sublayer in the melting or freezing of sea ice. J. Phys. Oceanogr., 19(1), 139147 (doi: 10.1175/1520-0485(1989)019<0139: ROTMSI>2.0.CO;2)
Wentz, FJ (1983) A model function for ocean microwave brightness temperatures. J. Geophys. Res., 88(C3), 18921908 (doi: 10.1029/JC088iC03p01892)
Wentz, FJ (2006) User’s manual: SSM/I antenna temperatures, version 6. Remote Sensing Systems, Santa Rosa, CA (RSS Tech. Memo. 082806)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed