Skip to main content Accessibility help
×
Home

Assessing the future evolution of meltwater intrusions into a mine below Gruvefonna, Svalbard

  • T.V. Schuler (a1), K. Melvold (a1), J.O. Hagen (a1) and R. Hock (a2)

Abstract

Meltwater intrusions of glacial origin complicate the operation of a coalmine situated approximately 200 m below the bed of Gruvefonna ice cap, Svalbard. The magnitude of this water input is expected to increase with the intended enlargement of the mine. The current praxis, evacuation of the water by pumping, is an expensive undertaking and prompts the investigation of alternative solutions. The evaluation of different options requires reliable values of the total volume and the input rate of the water to be drained. To quantify the melt rate at the glacier surface, we applied a distributed temperature-index model. The model parameters were calibrated using mass-balance measurements performed at Gruvefonna during the 2003 ablation season. The water discharge in the mine during the same period was derived from records of the pump rate. Comparing the records of modelled melt and measured discharge reveals an efficient hydraulic connection between the glacier surface and the mine. The total discharge volume in the mine over the 2003 melt season was about 2.8 × 106m3, exceeding significantly the total melt- and rainwater production on the glacier surface directly above the mine (1.2 × 106m3). This implies that the mine discharge receives contributions from a larger surface area. Based on the distribution of hydraulic potential at the glacier bed, we estimate this contributing area. In a number of scenarios, we calculate the amount of meltwater intrusions for several steps of the planned mine enlargement.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessing the future evolution of meltwater intrusions into a mine below Gruvefonna, Svalbard
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessing the future evolution of meltwater intrusions into a mine below Gruvefonna, Svalbard
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessing the future evolution of meltwater intrusions into a mine below Gruvefonna, Svalbard
      Available formats
      ×

Copyright

References

Hide All
Björnsson, H. 1982. Drainage basins on Vatnajökull mapped by radio echo soundings. Nord. Hydrol., 13(4), 213232.
Björnsson, H. and 6 others. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 2332.
Braithwaite, R.J. 1981. On glacier energy balance, ablation, and air temperature. J. Glaciol., 27(97), 381391.
Chow, V.T., Maidment, D.R. and Mays, L.W.. 1988. Applied hydrology. New York, McGraw-Hill Inc.
Flowers, G.E. and Clarke, G.K.C.. 2002. A multicomponent coupled model of glacier hydrology: 2. Application to Trapridge Glacier, Yukon, Canada. J. Geophys. Res., 107(B11), 2288. (10.1029/ 2001JB001122.)
Fountain, A.G. and Walder, J.S.. 1998. Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328.
Hagen, J.O., Liestøl, O., Roland, E. and Jørgensen, T.. 1993. Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinst. Medd. 129.
Hagen, J.O., Etzelmüller, B. and Nuttall, A.M.. 2000. Runoff and drainage pattern derived from digital elevation models, Finsterwalderbreen, Svalbard. Ann. Glaciol., 31, 147152.
Hamran, S.E. and Aarholt, E.. 1993. Glacier study using wavenumber domain synthetic aperture radar. Radio Sci., 28(4), 559570.
Hock, R. 1999. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101111.
Hock, R. 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104115.
Jansson, P., Hock, R. and Schneider, T.. 2003. The concept of glacier storage: a review. J. Hydrol., 282(1–4), 116129.
Kennett, M., Rolstad, C., Elvehøy, H. and Ruud, E.. 1997. Calculation of drainage divides beneath the Svartisen ice-cap using GIS hydrologic tools. Nor. Geogr. Tidsskr., 51(1), 2328.
Liestøl, O. 1976. Pingos, springs and permafrost in Spitsbergen. Norsk Polarinstitutt Årbok 1975, 729.
Liu, H., Jezek, K.C. and Li, B.. 1999. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: a geographic information system based approach. J. Geophys. Res., 104(B10), 23,19923,213.
Melvold, K., Schuler, T. and Lappegard, G.. 2003. Ground-water intrusions in a mine beneath Høganesbreen, Svalbard: assessing the possibility of evacuating water subglacially. Ann. Glaciol., 37, 269274.
Ohmura, A. 2001. Physical basis for the temperature-based melt-index method. J. Appl. Meteorol., 40(4), 753761.
Sand, K., Winther, J.-G., Maréchal, D., Bruland, O. and Melvold, K.. 2003. Regional variations of snow accumulation on Spitsbergen, Svalbard, 1997–99. Nord. Hydrol., 34(1/2), 1732.
Schuler, T., Fischer, U.H., Sterr, R., Hock, R. and Gudmundsson, G.H.. 2002. Comparison of modeled water input and measured discharge prior to a release event: Unteraargletscher, Bernese Alps, Switzerland. Nord. Hydrol., 33(1), 2746.
Shreve, R.L. 1972. Movement of water in glaciers. J. Glaciol., 11(62), 205214.
Thomsen, H.H., Thorning, L. and Olesen, O.B.. 1989. Applied glacier research for planning hydro-electric power, Ilulissat/ Jakobshavn, West Greenland. Ann. Glaciol., 13, 257261.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed