Skip to main content Accessibility help

An automated approach to the location of icequakes using seismic waveform amplitudes

  • G.A. Jones (a1) (a2), B. Kulessa (a2), S.H. Doyle (a1), C.F. Dow (a2) and A. Hubbard (a1)...


We adapt from volcano seismology an automated method of locating icequakes with poorly defined onsets and indistinguishable seismic phases, which can be tuned to either body or surface waves. The method involves (1) the calculation of the root-mean-squared amplitudes of the filtered envelope signals, (2) a coarse-grid search to locate the hypocentres of the seismic events using their amplitudes and (3) refinement of hypocentre locations using an iteratively damped least-squares approach. First, we calibrate the adapted method by application to real data, recorded using a network of six passive seismometers, in response to surface explosions in known locations on the western margin of the Greenland ice sheet. Second, we present a seismic modelling experiment simulating rapid supraglacial lake drainage driven hydrofracture through 1 km thick ice. The test reveals horizontal and vertical location uncertainties of ∼121 m and 275 m, respectively. Since seismic emissions from glaciers and ice sheets often have complex waveforms akin to those considered here, our adapted method is likely to have widespread applicability to glaciological problems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An automated approach to the location of icequakes using seismic waveform amplitudes
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An automated approach to the location of icequakes using seismic waveform amplitudes
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An automated approach to the location of icequakes using seismic waveform amplitudes
      Available formats



Hide All
Aki, K and Richards, PG (2002) Quantative seismology, 2nd edn. University Science Books, Sausalito, CA
Alley, RB, Dupont, TK, Parizek, BR and Anandakrishnan, S (2005) Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Ann. Glaciol., 40, 814 (doi: 10.3189/172756405781813483)
Anandakrishnan, S and Bentley, CR (1993) Micro-earthquakes beneath Ice Streams B and C, West Antarctica: observations and implications. J. Glaciol., 39(133), 455462
Baker, T, Granat, R and Clayton, RW (2005) Real-time earthquake location using Kirchhoff reconstruction. Bull. Seismol. Soc. Am., 95(2), 699707 (doi: 10.1785/0120040123)
Bassis, JN and 7 others (2007) Seismicity and deformation associated with ice-shelf rift propagation. J. Glaciol., 53(183), 523536 (doi:10.3189/002214307784409207)
Battaglia, J and Aki, K (2003) Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J. Geophys. Res., 108(2364) (doi: 10.1029/2002JB002193)
Battaglia, J, Aki, K and Ferrazzini, V (2005) Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 1. Location of tremor sources. J. Volcan. Geotherm. Res., 147(3–4), 268290 (doi: 10.1016/j.jvolgeores.2005.04.005)
Beyreuther, M, Barsch, R, Krischer, L, Megies, T, Behr, Y and Wassermann, J (2010) ObsPy: a Python toolbox for seismology. Seismol. Res. Lett., 81(3), 530533 (10.1785/gssrl.81.3.530)
Booth, AD, Clark, RA, Kulessa, B, Murray, T and Hubbard, A (2012) Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland. Cryos. Discuss., 6(1), 759792 (doi: 10.5194/tcd-6-759-2012)
Chambers, K, Kendall, J-M, Brandsberg-Dahl, S and Rueda, J (2010) Testing the ability of surface arrays to monitor microseismic activity. Geophys. Prospect., 58(5), 821830 (doi: 10.1111/j.1365-2478.2010.00893.x)
Chen, X, Shearer, PM, Walter, F and Fricker, HA (2011) Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images. J. Geophys. Res., 116(B6), B06311 (doi: 10.1029/2011JB008262)
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781 (doi: 10.1126/science.1153360)
Di Grazia, G, Falsaperla, S and Langer, H (2006) Volcanic tremor location during the 2004 Mount Etna lava effusion. Geophys. Res. Lett., 33(4), L04304 (doi: 10.1029/2005GL025177)
Ekström, G, Nettles, M and Tsai, VC (2006) Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311(5768), 17561758 (doi: 10.1126/science.1122112)
Kanasewich, ER (1981) Time sequence analysis in geophysics, 3rd edn. University of Alberta Press, Edmonton, Alberta
Kao, H and Shan, S-J (2004) The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophys. J. Int., 157(2), 589594 (doi: 10.1111/j.1365-246X.2004.02276.x)
Kao, H and Shan, S-J (2007) Rapid identification of earthquake rupture plane using Source-Scanning Algorithm. Geophys. J. Int., 168(3), 10111020 (doi: 10.1111/j.1365-246X.2006.03271.x)
Krawczynski, MJ, Behn, MD, Das, SB and Joughin, I (2009) Constraints on the lake volume required for hydro-fracture through ice sheets. Geophys. Res. Lett., 36(10), L10501 (doi: 10.1029/2008GL036765)
Lee, WHK and Stewart, SW (1981) Advances in geophysics: principles and applications of microearthquake networks. Academic Press, New York
Moré, JJ (1978) The Levenberg–Marquardt algorithm: implementation and theory. Numerical Analysis: Lecture Notes in Mathematics, 630, 105116 (10.1007/BFb0067700)
Neave, KG and Savage, JC (1970) Icequakes on the Athabasca Glacier. J. Geophys. Res., 75(8), 13511362 (doi: 0.1029/JB075i008p01351)
O’Neel, S and Pfeffer, WT (2007) Source mechanics for monochromatic icequakes produced during iceberg calving at Columbia Glacier, AK. Geophys. Res. Lett., 34(22), L22502 (doi: 10.1029/2007GL031370)
O’Neel, S, Marshall, HP, McNamara, DE and Pfeffer, WT (2007) Seismic detection and analysis of icequakes at Columbia Glacier, Alaska. J. Geophys. Res., 112(F3), F03S23 (doi: 10.1029/2006JF000595)
Rentsch, S, Buske, S, Lüth, S and Shapiro, SA (2007) Fast location of seismicity: a migration-type approach with application to hydraulic-fracturing data. Geophysics, 72(1), S33S40 (doi: 10.1190/1.240113)
Rial, JA, Tang, C and Steffen, K (2009) Glacial rumblings from Jakobshavn ice stream, Greenland. J. Glaciol., 55(191), 389399 (doi: 10.3189/002214309788816623)
Roux, P-F, Marsan, D, Metaxian, J-P, O’Brien, G and Moreau, L (2008) Microseismic activity within a serac zone in an alpine glacier (Glacier d’Argentière, Mont Blanc, France). J. Glaciol., 54(184), 157168 (doi: 10.3189/002214308784409053)
Shelly, DR (2010) Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault. Nature, 463(7281), 648652 (doi: 10.1038/nature08755)
Smith, AM (2006) Microearthquakes and subglacial conditions. Geophys. Res. Lett., 33(24), L24501 (doi: 10.1029/2006GL028207)
Smith, AM (2007) Subglacial bed properties from normal-incidence seismic reflection data. J. Environ. Eng. Geophys., 12(1), 313 (doi: 10.2113/JEEG12.1.3)
Taisne, B, Brenguie, F, Shapiro, M and Ferrazzini, V (2011) Imaging the dynamics of magma propagation using radiated seismic intensity. Geophys. Res. Lett., 38(4), L04304 (doi: 10.1029/2010GL046068)
Tsai, VC and Ekström, G (2007) Analysis of glacial earthquakes. J. Geophys. Res., 112(F3), F03522 (doi: 10.1029/2006JF000596)
Tsai, VC and Rice, JR (2010) A model for turbulent hydraulic fracture and application to crack propagation at glacier beds. J. Geophys. Res., 115(F3), F03007 (doi: 10.1029/2009JF001474)
Van der Veen, CJ (1998) Fracture mechanics approach to penetration of bottom crevasses on glaciers. Cold Reg. Sci. Technol., 27(3), 213223 (doi: 10.1016/S0165-232X(98)00006-8)
Van der Veen, CJ (2007) Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett., 34(1), L01501 (doi: 10.1029/2006GL028385)
Walter, F, Deichmann, N and Funk, M (2008) Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland. J. Glaciol., 54(186), 511521 (doi: 10.3189/002214308785837110)
Walter, F, O’Neel, S, McNamara, DE, Pfeffer, T, Bassis, J and Fricker, HA (2010) Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophys. Res. Lett., 37(15), L15501 (doi: 10.1029/2010GL043201)
West, ME, Larsen, CF, Truffer, M, O’Neel, S and LeBlanc, L (2010) Glacier microseismicity. Geology, 38(4), 319322 (doi: 10.1130/G30606.1)
Winberry, JP, Anandakrishnan, S and Alley, RB (2009) Seismic observations of transient subglacial water-flow beneath MacAyeal Ice Stream, West Antarctica. Geophys. Res. Lett., 36(11), L11502 (doi: 10.1029/2009GL037730)
Yamasato, H (1997) Quantitative analysis of pyroclastic flows using infrasonic and seismic data at Unzen Volcano, Japan. J. Phys. Earth, 45(6), 397416


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed