Skip to main content Accessibility help

Effect of surrounding trees and dry rush presence on spring zooplankton community in an urban pond complex

  • Anna M. Basińska (a1) (a2) (a3), Kasper Świdnicki (a1) and Natalia Kuczyńska-Kippen (a1)


The role of both natural and artificial ponds in supporting biodiversity and as an infrequent habitat for aquatic organisms in urban areas may be greater than that in more rural landscapes. Moreover, biological succession and the dynamics of zooplankton can differ in urban ponds where we may observe a specific combination of environmental factors (e.g., an increase of eutrophication and pollution) compared to other water ecosystems. Therefore, ten urban artificial ponds were examined and the type of direct catchment area was established as the most important factor in the determination of zooplankton distribution. Different environmental factors structured zooplankton distribution between forest and meadow ponds. Low concentrations of oxygen as well as lack of fish, which was an effect of high concentrations of ammonium nitrogen, were responsible for the occurrence of littoral species and large crustacean species (e.g., Daphnia hyalina and Megacyclops viridis) in the case of forest ponds. Fish predation on large crustaceans and favourable food conditions (high concentration of chlorophyll a) created suitable conditions for the occurrence of pelagic species (e.g., Keratella cochlearis and K. quadrata) in the case of meadow ponds. Moreover, soon after the ice cover melted and before new macrophytes developed, previous-year dry rush stems created valuable refuge conditions for zooplankton in this type of pond. Despite anthropogenic pollution resulting from the close vicinity of the agglomeration of Poznań and unfavourable conditions attributed to the spring season a diverse zooplankton community occurred, reaching the level of 119 species in total.


Corresponding author

*Corresponding author:


Hide All
[1]Allan, J.D., 2004. Influence of land use and landscape setting on the ecological status of rivers. Limnetica, 23, 187198.
[2]American Public Health Association, American Water Works Association, and Water Environment Federation, 1998. Standard Methods for the Examination of Water and Wastewater (20th edn,), American Public Health Association, Washington, DC, 1183 p.
[3]Balayla, D.J. and Moss, B., 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquat. Ecol., 37, 417435.
[4]Boix, D., Biggs, J., Céréghino, R., Hull, A.P., Kalettka, T. and Oertli, B., 2012. Pond research and management in Europe: “Small is Beautiful”. Hydrobiologia, 689, 19.
[5]Brylińska, M., 1991. Freshwater fishes of Poland (Ryby słodkowodne Polski), Polish Scientific Publishers PWN, Warsaw, 521 p.
[6]Céréghino, R., Biggs, J., Oertli, B. and Declerck, S., 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia, 597, 16.
[7]Dalu, T., Clegg, B. and Nhiwatiwa, T., 2012. Macroinvertebrate communities associated with littoral zone habitats and the influence of environmental factors in Malilangwe Reservoir, Zimbabwe . Knowl. Manag. Aquat. Ecosyst., 406, 515.
[8]Declerck, S., De Bie, T., Ercken, D., Hampel, H., Schrijvers, S., Van Wichelen, J., Gillard, V., Mandiki, R., Lossonf, B., Bauwens, D., Keijers, S., Vyverman, W., Goddeeris, B., De Meester, L., Brendonck, L. and Martens, K., 2006. Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol. Conserv., 131, 523532.
[9]De Paggi, S.B. and Devercelli, M., 2011. Land use and basin characteristics determine the composition and abundance of the microzooplankton. Water Air Soil Poll., 218, 93108.
[10]Di Prinzio, C.Y., Casaux, R.J. and Miserendino, M.L., 2009. Effects of land use on fish assemblages in Patagonian low order streams. Ann. Limnol. - Int. J. Lim., 45, 267277.
[11]Dodson, S.I., Everhart, W.R., Jandl, A.K. and Krauskopf, S.J., 2007. Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia, 579, 393399.
[12]Ejsmont-Karabin, J. and Hutorowicz, A., 2011. Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. St., 40, 7176.
[13]Ejsmont-Karabin, J. and Kruk, M., 1998. Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia, 387–388, 241249.
[14]Elliott, J.I., 1977. Seasonal changes in the abundance and distribution of planktonic rotifers in Grasmere (English Lake District). Freshw. Biol., 7, 147166.
[15]Flößner, D., 2000. Die Haplopoda und Cladocera Mitteleuropas, Backhuys Publishers, Leiden, 428 p.
[16]Grochowska, J.K. and Brzozowska, R., 2013. The influence of different recultivation methods on the water buffer capacity in a degraded urban lake. Knowl. Managt. Aquatic Ecosyst., 410, 01.
[17]Hanazato, T. and Yasuno, M., 1989. Influence of overwintering Daphnia on spring zooplankton communities: an experimental study. Ecol. Res., 4, 323338.
[18]Hansson, L.A., Nicolle, A., Brodersen, J., Romare, P., Skov, C. and Brönmark, C., 2007. Consequences of fish predation, migration and juvenile ontogeny on zooplankton spring dynamics. Limnol. Oceanogr., 207, 696706.
[19]Iglesias, C., Goyenola, G., Mazzeo, N., Meerhoff, M., Rodó, E. and Jeppesen, E., 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia, 584, 179189.
[20]Lampert, W., Lampert, K.P. and Larsson, P., 2010. Coexisting overwintering strategies in Daphnia pulex: a test of genetic differences and growth responses. Limnol. Oceanogr., 55, 18931900.
[21]Lepš, J. and Šmilauer, P., 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge, 284 p.
[22]Lucena-Moya, P. and Duggan, I.C., 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat. Ecol., 45, 279287.
[23]McGavigan, C., 2012. A quantitative method for sampling littoral zooplankton in lakes: the active tube. Limnol. Oceanogr.–Meth., 10, 289295.
[24]Nicolle, A., Hansson, L.-A. and Brönmark, C., 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia, 652, 119125.
[25]Norris, V., 1993. The use of buffer zones to protect water quality: a review. Water Resour. Manag., 7, 257272.
[26]Park, S.-R., Lee, H.-J., Lee, S.-W., Hwang, S.-J., Byeon, M.-S., Joo, G.-J., Jeong, K.-S., Kong, D.-S. and Kim, M.-C., 2011. Relationships between land use and multi-dimensional characteristic of streams and rivers at two different scales. Ann. Limnol. - Int. J. Lim., 47, S107S116.
[27]Pawuła-Piwowarczyk, R., 1992. Spatial Management in the Cities and Communes of Wielkopolska Region. (Gospodarka przestrzenna miast i gmin w regionie Wielkopolski), Zakład Poligraficzny Politechniki Poznańskiej, Poznań, 353 p.
[28]Pourriot, R., 1970. Quelques Trichocerca (Rotifères) et leurs régimes alimentaires. Ann. Hydrobiol., 1, 155171.
[29]Pourriot, R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beiheft, 8, 243260.
[30]Radwan, S., Bielańska-Grajner, I. and Ejsmont-Karabin, J., 2004. Rotifers Rotifera. Freshwater fauna of Poland (Wrotki Rotifera. Fauna słodkowodna Polski), Oficyna Wydawnicza Tercja, Łódź, 447 p.
[31]Ruttner-Kolisko, A., 1980. The abundance and distribution of Filinia terminalis in various types of lakes as related to temperature, oxygen, and food. Hydrobiologia, 73, 169175.
[32]Rybak, J.I. and Błędzki, L.A., 2010. Freshwater Planktonic Crustaceans: Identification key. (Słodkowodne skorupiaki planktonowe), Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 366 p.
[33]Sobczyński, T. and Joniak, T., 2009. Vertical changeability of physical-chemical features of bottom sediments in three lakes in aspect type of water mixis and intensity of human impact. Pol. J. Environ. Stud., 18, 10931099.
[34]Špoljar, M., Dražina, T., Šmargač, J., Borojevič, K.K. and Žutnić, P., 2012. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system (Papuk Nature Park, Croatia). Ann. Limnol. - Int. J. Lim., 48, 161175.
[35]Stansfield, J.H., Perrow, M.R., Tench, L.D., Jowitt, A.J.D. and Taylor, A.A.L., 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia, 342–343, 229240.
[36]Starmach, K., 1989. Plankton roślinny wód słodkich. Metody, badania i klucze do oznaczania gatunków występujących w wodach Europy Środkowej (Freshwater Phytoplankton: Methods and the Identification Key of Central European Species), Vol. I, Polska Akademia Nauk, Polskie Wydawnictwo Naukowe, 496 p.
[37]Sterner, R.W., 1989. The role of grazers in phytoplankton succession. In: Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer, New York, 107170.
[38]Symons, C.C., Arnott, S.E. and Sweetman, J.N., 2012. Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia, 694, 131141.
[39]Tessier, C., Cattaneo, A., Pinel-Alloul, B., Galanti, G. and Morabito, G., 2004. Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Candia (Italy). J. Limnol., 63, 190198.
[40]Tinson, S. and Laybourn-Parry, J., 1985. The behavioural responses and tolerance of freshwater benthic cyclopoid copepods to hypoxia and anoxia. Hydrobiologia, 127, 257263.
[41]Tõnno, I., Künnap, H. and Nõges, T., 2003. The role of zooplankton grazing in the formation of ‘clear water phase’ in a shallow charophyte-dominated lake. Hydrobiologia, 506–509, 353358.
[42]Warfe, D.M. and Barmuta, L.A., 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia, 141, 171178.


Related content

Powered by UNSILO

Effect of surrounding trees and dry rush presence on spring zooplankton community in an urban pond complex

  • Anna M. Basińska (a1) (a2) (a3), Kasper Świdnicki (a1) and Natalia Kuczyńska-Kippen (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.