Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T22:00:24.285Z Has data issue: false hasContentIssue false

Dispersal of Corbicula fluminea: factors influencing the invasive clam's drifting behavior

Published online by Cambridge University Press:  10 January 2014

Inês Correia Rosa
Affiliation:
Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
Joana Luísa Pereira*
Affiliation:
Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
Raquel Costa
Affiliation:
CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
João Gomes
Affiliation:
CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
Maria de Lourdes Pereira*
Affiliation:
Department of Biology and CICECO (Centre for Research in Ceramics & Composite Materials), University of Aveiro, Aveiro, Portugal
Fernando Gonçalves
Affiliation:
Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
*
*Corresponding author: jpereira@ua.pt
Get access

Abstract

Corbicula fluminea, is one of the most successful invasive species in fresh and brackish waters. Dispersal is one of the most determinant steps in the invasive process, and the full understanding of the mechanisms involved in this step is critical for adequate pest management both in the wild and in industries affected by this species’ biofouling activity. A mucous drogue line produced by mucocytes packed along the inner demibranchs of the clams’ gills seem to play an important role in assisting drifting and hence dispersal. Two Asian clam populations geographically separated (one in the USA and the other in Portugal), investigated at different times of the year, were reported to differ in terms of mucous drogue line production and floating. In this study, genetics and seasonality effects were hypothesized to explain the difference between the populations. To test these hypotheses, the two populations were genetically compared, and the Portuguese one was followed for 14 months to record the animals’ mucous drogue line production and flotation capabilities and locate the population reproductive periods. Our results signal a possible scenario of microevolution with consequences on the production of the clams’ mucilaginous drogue line. Although some authors advocate a link between mucous threads formation and reproduction events, such a relationship was not observed in this study. By contributing to the understanding of a physiological trait of the Asian clam that is important for dispersal, this study may be of practical relevance for pest monitoring and control.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, D.W. and McMahon, R.F., 1978. Growth, fecundity, and bioenergetics in a natural population of Asiatic freshwater clam, Corbicula manilensis Philippi, from north central Texas. J. Mollusc. Stud., 44, 4970.Google Scholar
APHA, 1995. Standard Methods for the Examination of Water and Wastewater, Washington.PubMed
Araujo, R., Moreno, D. and Ramos, M.A., 1993. The Asiatic clam Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) in Europe. Am. Malacol. Bull., 10, 3949.Google Scholar
Ashley, M.V., Willson, M.F., Pergams, O.R.W., O'Dowd, D.J., Gende, S.M. and Brown, J.S., 2003. Evolutionarily enlightened management. Biol. Conserv., 111, 115123.CrossRefGoogle Scholar
ASTM. 2000. Standard test methods for moisture, ash, and organic matter of peat and other organic soils (D 2974-00). American Society for Testing and Materials, West Conshohocken, USA.
Barinova, S.S., Yehuda, G. and Nevo, E., 2010. Comparative analysis of algal communities in the rivers of northern and southern Israel as bearing on ecological consequences of climate change. J. Arid Environ., 74, 765776.CrossRefGoogle Scholar
Britton, J.C. and Morton, B., 1982. A dissection guide, field and laboratory manual for the introduced bivalve Corbicula fluminea. Malacol. Rev. Suppl., 3, 182.Google Scholar
Brower, J.E., Zar, J.H. and von Endem, C.N. 1997. Field and Laboratory Methods for General Ecology, 4th edn,, WCB McGraw-Hill, Boston, USA.Google Scholar
Byrne, M., Phelps, H., Church, T., Adair, V., Selvakumaraswamy, P. and Potts, J., 2000. Reproduction and development of the freshwater clam Corbicula australis in southeast Australia. Hydrobiologia, 418, 185197.CrossRefGoogle Scholar
Cataldo, D. and Boltovskoy, D., 1998. Population dynamics of Corbicula fluminea (Bivalvia) in the Paraná River Delta (Argentina). Hydrobiologia, 380, 153163.CrossRefGoogle Scholar
Cohen, A.N. and Carlton, J.T., 1998. Accelerating invasion rate in a highly invaded estuary. Science, 279, 555558.CrossRefGoogle Scholar
Counts, C.L., 1986. The zoogeography and history of the invasion of the United States by Corbicula fluminea. Proceedings of the Second International Corbicula Symposium. Am. Malacol. Bull. - Special edition No. 2.
DAISIE – European Invasive Alien Species Gateway. 2008. Corbicula fluminea, Accessed online 01 June 2013, http://www.europe-aliens.org/speciesFactsheet.do?speciesId=53281
Davis, M.A. 2010. Invasion Biology, Oxford University Press, Oxford, UK.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol., 3, 294299.Google ScholarPubMed
Franco, J.N., Patricio, J., Modesto, V., Thompson, J., Marques, J.C. and Neto, J.M., 2012. Population dynamics of Corbicula fluminea (Müller, 1774) in mesohaline and oligohaline habitats: invasion success in a Southern Europe estuary. Estuar. Coast. Shelf Sci., 112, 3139.CrossRefGoogle Scholar
French, J.R.P. and Schloesser, D.W., 1996. Distribution and winter survival health of Asian clams, Corbicula fluminea, in the St Clair River, Michigan. J. Freshw. Ecol., 11, 183192.CrossRefGoogle Scholar
Glaubrecht, M., von Rintelen, T. and Korniushin, A.V., 2003. Toward asystematic revision of brooding freshwater Corbiculidae in Southeast Asia (Bivalvia, Veneroida): on shell morphology, anatomy and molecular phylogenetics of endemic taxa from islands in Indonesia. Malacologia, 45, 140.Google Scholar
Hedtke, S.M., Stanger-Hall, K., Baker, R.J. and Hillis, D.M., 2008. All-male asexuality: Origin and maintenance of androgenesis in the Asian clam Corbicula. Evolution, 62, 11191136.CrossRefGoogle ScholarPubMed
Hornbach, D.J., 1992. Life history traits of a riverine population of the Asian clam Corbicula fluminea. Am. Midl. Nat., 127, 248257.CrossRefGoogle Scholar
Ishibashi, R., Ookubo, K., Aoki, M., Utaki, M., Komaru, A. and Kawamura, K., 2003. Androgenetic reproduction in a freshwater diploid clam Corbicula fluminea (Bivalvia : Corbiculidae). Zoolog. Sci., 20, 727732.CrossRefGoogle Scholar
Ituarte, C.F., 1985. Growth dynamics in a natural population of Corbicula fluminea (Bivalvia: Sphaeriacea) at Punta Atalaya, Rio de La Plata, Argentina. Stud. Neotrop. Fauna Environ., 20, 217225.CrossRefGoogle Scholar
Ituarte, C.F., 1994. Corbicula and Neocorbicula (Bivalvia: Corbiculidae) in the Paraná, Uruguay, and Rio de la Plata Basins. Nautilus, 107, 129135.Google Scholar
Komaru, A. and Kawagishi, T., 1998. Cytological evidence of spontaneous androgenesis in the freshwater clam Corbicula leana Prime. Dev. Genes Evol., 208, 4650.CrossRefGoogle ScholarPubMed
Kraemer, L.R. and Galloway, M.L., 1986. Larval development of Corbicula fluminea (Müller) (Bivalvia, Corbiculacea) – an appraisal of its heterochrony. Am. Malacol. Bull., 4, 6179.Google Scholar
Lee, C.C., Jhuang, Y.F., Liu, L.L., Hsieh, C.Y., Chen, C.S. and Tien, C.J., 2009. The major source and impact of phenyltin contamination on freshwater aquaculture clam Corbicula fluminea and wild golden apple snail Pomacea canaliculata. Environ. Chem., 6, 341349.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. 1998. Numerical Ecology, 2nd edn,, Elsevier, Amsterdam.Google Scholar
Lorenzen, C.J., 1967. Determination of chlorophyll a and phae-pigments: spectrophotometric equations. Limnol. Oceanogr., 12, 343346.CrossRefGoogle Scholar
McMahon, R.F. and Williams, C.J., 1986. A reassessment of growth rate, life span, life cycles and population dynamics in a natural population and field caged individuals of Corbicula fluminea (Müller) (Bivalvia: Corbiculacea). Proceedings of the Second International Corbicula Symposium. Am. Malacol. Bull. – Special edition No. 2.
Morgan, D.E., Keser, M., Swenarton, J.T. and Foertch, J.F., 2003. Population dynamics of the Asiatic clam, Corbicula fluminea (Müller) in the Lower Connecticut River: establishing a foothold in New England. J. Shellfish Res., 22, 193203.Google Scholar
Morton, B. 1977. Freshwater fouling bivalves, First International Corbicula Symposium. Texas Christian University, Fort Worth, Texas, USA, pp. 114.
Mouthon, J., 1981. Sur la présence en France et au Portugal de Corbicula (Bivalvia, Corbiculidae) originaire d’ Asie. Basteria, 45, 109116.Google Scholar
Mouthon, J., 2001a. Life cycle and population dynamics of the Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) in the Saone River at Lyon (France). Hydrobiologia, 452, 109119.CrossRefGoogle Scholar
Mouthon, J., 2001b. Life cycle and population dynamics of the Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) in the Rhone River at Creys-Malville (France). Arch. Hydrobiol., 151, 571589.CrossRefGoogle Scholar
Mouthon, J., Parghentanian, T., 2004. Comparison of the life cycle and population dynamics of two Corbicula species, C. fluminea and C. fluminalis (Bivalvia: Corbiculidae) in two French canals. Arch. Hydrobiol., 161, 267287.CrossRefGoogle Scholar
Park, J.K. and Kim, W., 2003. Two Corbicula (Corbiculidae: Bivalvia) mitochondrial lineages are widely distributed in Asian freshwater environment. Mol. Phylogenet. Evol., 29, 529539.CrossRefGoogle ScholarPubMed
Phelps, H.L., 1994. The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River estuary near Washington, DC. Estuaries, 17, 614621.CrossRefGoogle Scholar
Pigneur, L.-M., Marescaux, J., Roland, K., Etoundi, E., Descy, J.-P. and Van Doninck, K., 2011. Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in Western Europe. BMC Evol. Biol., 11, 147.CrossRefGoogle Scholar
Pimentel, D., Zuniga, R. and Morrison, D., 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ., 52, 273288.CrossRefGoogle Scholar
Prezant, R.S. and Chalermwat, K., 1984. Flotation of the bivalve Corbicula fluminea as a means of dispersal. Science, 225, 14911493.CrossRefGoogle ScholarPubMed
Quinn, G.P. and Keough, M.J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York, p. 537.CrossRefGoogle Scholar
Rajagopal, S., van der Velde, G. and de Vaate, A.B., 2000. Reproductive biology of the Asiatic clams Corbicula fluminalis and Corbicula fluminea in the river Rhine. Arch. Hydrobiol., 149, 403420.CrossRefGoogle Scholar
Renard, E., Bachmann, V., Cariou, M.L. and Moreteau, J.C., 2000. Morphological and molecular differentiation of invasive freshwater species of the genus Corbicula (Bivalvia, Corbiculidea) suggest the presence of three taxa in French rivers. Mol. Ecol., 9, 20092016.CrossRefGoogle ScholarPubMed
Ricciardi, A. and MacIsaac, H.J., 2000. Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends Ecol. Evol., 15, 6265.CrossRefGoogle ScholarPubMed
Rosa, I.C., Pereira, J.L., Gomes, J., Saraiva, P.M., Goncalves, F. and Costa, R., 2011. The Asian clam Corbicula fluminea in the European freshwater-dependent industry: a latent threat or a friendly enemy? Ecol. Econ., 70, 18051813.CrossRefGoogle Scholar
Rosa, I.C., Pereira, J.L., Costa, R., Gonçalves, F. and Prezant, R.S., 2012. Effects of upper-limit water temperatures on the dispersal of the Asian clam Corbicula fluminea. PLoS ONE, 7, e46635.CrossRefGoogle ScholarPubMed
Schmidlin, S. and Baur, B., 2007. Distribution and substrate preference of the invasive clam Corbicula fluminea in the river Rhine in the region of Basel (Switzerland, Germany, France). Aquat. Sci., 69, 153161.CrossRefGoogle Scholar
Sousa, R., Antunes, C. and Guilhermino, L., 2006. Factors influencing the occurrence and distribution of Corbicula fluminea (Müller, 1774) in the River Lima estuary. Ann. Limnol. – Int. J. Lim., 42, 165171.CrossRefGoogle Scholar
Sousa, R., Freire, R., Rufino, M., Mendez, J., Gaspar, M., Antunes, C. and Guilhermino, L., 2007. Genetic and shell morphological variability of the invasive bivalve Corbicula fluminea (Müller, 1774) in two Portuguese estuaries. Estuar. Coast. Shelf Sci., 74, 166174.CrossRefGoogle Scholar
Sousa, R., Nogueira, A., Gaspar, M., Antunes, C. and Guilhermino, L., 2008. Growth and extremely high production of the non-indigenous invasive species Corbicula fluminea (Müller, 1774): Possible implications for ecosystem functioning. Estuar. Coast. Shelf Sci., 80, 289295.CrossRefGoogle Scholar
Williams, C.J. and McMahon, R.F., 1987. Annual variation of tissue biomass and carbon nitrogen content in the freshwater bivalve Corbicula fluminea relative to downstream dispersal. Can. J. Zool., 67, 8290.CrossRefGoogle Scholar
Supplementary material: PDF

LIMN130072 vol50 N°1

supplementary materiel

Download LIMN130072 vol50 N°1(PDF)
PDF 168.7 KB