Skip to main content Accessibility help

Different effects of planktonic invertebrate predators and fish on the plankton community in experimental mesocosms

  • Michal Šorf (a1), Zdeněk Brandl (a1), Petr Znachor (a1) (a2) and Mojmír Vašek (a2)


The impact of fish and cyclopoid copepod predation on zooplankton communities was evaluated using large-volume mesocosms (depth 9.5 m; volume 13 m3) in the Římov reservoir (Czech Republic). Two yearling roach and perch individuals introduced into mesocosms represented the fish treatment, which was compared to cyclopoid copepods (initial abundance of 2 ind.L−1) and a control with no initial addition of predators. Our results clearly support the hypothesis that planktivorous fish feeding leads to the suppression of large-bodied cladocerans. In the presence of fish, the cladoceran community changed from a dominance of large-bodied Daphnia spp. at the beginning to dominance by the smaller Bosmina longirostris at the end of the experiment. Chlorophyll-a concentration and rotifer abundances increased in the absence of daphnids. In the absence of fish, the presence of large-bodied cladocerans resulted in decreasing chlorophyll-a concentration. Although no significant differences were observed between cyclopoid abundances in treatments stocked with cyclopoids and the control, the proportion of large cladocerans clearly showed the effect of the manipulation. The similar trends in both of these treatments did not confirm the importance of cyclopoid predation in our experiment. The overall strong effect of fish over cyclopoid predation suggests the main role of fish predation in the forming of zooplankton communities and in turn impacting phytoplankton biomass in mesocosms.


Corresponding author

*Corresponding author:


Hide All
[1]Beklioglu, M., 1999. A review on the control of eutrophication in deep and shallow lakes. Turk. J. Zool., 23, 327336.
[2]Benndorf, J., Wissel, B., Sell, A.F., Hornig, U., Ritter, P. and Böing, W., 2000. Food web manipulation by extreme enhancement of piscivory: an invertebrate predator compensates for the effects of planktivorous fish on a plankton community. Limnologica, 30, 235245.
[3]Berg, S., Jeppesen, E. and Søndergaard, M., 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool 1. Effects on the fish population in Lake Lyng, Denmark. Hydrobiologia, 342–343, 311318.
[4]Bertolo, A., Lacroix, G., Lescher-Moutoue, F. and Cardinal-Legrand, C., 2000. Plankton dynamics in planktivore- and piscivore- dominated mesocosms. Arch. Hydrobiol., 147, 327349.
[5]Beutler, M., Wiltshire, K.H., Meyer, B., Moldaenke, C., Luring, C., Meyerhofer, M., Hansen, U.P. and Dau, H., 2002. Afluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res., 72, 3953.
[6]Blumenshine, S.C. and Hambright, H.D., 2003. Top-down control in pelagic systems: a role for invertebrate predation. Hydrobiologia, 491, 347356.
[7]Brabrand, A., Faafeng, B. and Nilssen, J.P.M., 1986. Juvenile roach and invertebrate predators: delaying the recovery phase of eutrophic lakes by suppression of efficient filter-feeders. J. Fish Biol., 29, 99106.
[8]Brandl, Z., 1998. Life strategy and feeding relations of Cyclops vicinus in two reservoirs. Int. Rev. Hydrobiol., 83, 381388.
[9]Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia, 546, 475489.
[10]Brett, M.T. and Goldman, C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA, 93, 77237726.
[11]Brooks, J.L. and Dodson, S.I., 1965. Predation, body size, and composition of plankton. Science, 150, 2835.
[12]Carpenter, S.R. and Kitchell, J.F., 1992. Trophic cascade and biomanipulation: interface of research and management – a reply to the comment by DeMelo et al. Limnol. Oceanogr., 37, 208213.
[13]Carpenter, S.R., Kitchell, J.F. and Hodgson, J.R., 1985. Cascading trophic interactions and lake productivity. BioScience, 35, 634639.
[14]Chang, K.H. and Hanazato, T., 2005. Impact of selective predation by Mesocyclops pehpeiensis on a zooplankton community: experimental analysis using mesocosms. Ecol. Res., 20, 726732.
[15]Devetter, M. and Seda, J., 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Římov Reservoir in spring. Int. Rev. Hydrobiol., 91, 101112.
[16]Draštík, V., Kubečka, J., Tušer, M., Čech, M., Frouzová, J., Jarolím, O. and Prchalová, M., 2008. The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs. Hydrobiologia, 609, 2536.
[17]Dussart, B.H. and Defaye, D., 2001. Copepoda. Introduction to the Copepoda, Backhuys Publishers, Leiden, 344 p.
[18]Edmonson, W.T., 1971. Methods for processing samples and developing data. In: Edmonson, W.T. (ed.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, IPB Handbook, Vol. 17, Blackwell Scientific Publications, Oxford, 127137.
[19]Gliwicz, Z.M., Hillbricht-Ilkowska, A. and Wegleńska, T., 1978. Contribution of fish and invertebrate predation to the elimination of zooplankton biomass in two Polish lakes. Verh. Internat. Verein. Limnol., 20, 10071011.
[20]Ha, J.-Y., Saneyoshi, M., Park, H.-D., Toda, H., Kitano, S., Homma, T., Shiina, T., Moriyama, Y., Chang, K.-H. and Hanazato, T., 2013. Lake restoration by biomanipulation using piscivore and Daphnia stocking; results of the biomanipulation in Japan. Limnology, 14, 1930.
[21]Hansson, L.-A. and Tranvik, L.J., 1996. Quantification of invertebrate predation and herbivory in food chains of low complexity. Oecologia, 108, 542551.
[22]Hansson, L.-A., Annadotter, H., Bergman, E., Hamrin, S.F., Jeppesen, E., Kairesalo, T., Luokkanen, E., Nilsson, P.-Åk., Søndergaard, M. and Strand, J., 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems, 1, 558574.
[23]Hansson, L.-A., Gyllström, M., Stahl-Delbanco, A. and Svensson, M., 2004. Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biol., 49, 15381550.
[24]Hessen, D.O., 1985. Selective zooplankton predation by pre-adult roach (Rutilus rutilus): the size-selective hypothesis versus the visibility-selective hypothesis. Hydrobiologia, 124, 7379.
[25]Horppila, J. and Liljendahl-Nurminen, A., 2005. Clay-turbid interactions may not cascade – a reminder for lake managers. Restor. Ecol., 13, 242246.
[26]Hrbáček, J., 1962. Species composition and the amount of the zooplankton in relation to the fish stock. Rozpravy Československé akademie věd. Matematické a přírodní vědy, 72, 1116.
[27]Hrbáček, J. and Hrbáčková-Esslová, M., 1960. Fish stock as a protective agent in the occurrence of slow-developing dwarf species and strains of the genus Daphnia. Int. Rev. Gesamten Hydrobiol., 45, 355358.
[28]Hrbáček, J., Dvořáková, M., Kořínek, V. and Procházková, L., 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. Internat. Verein. Limnol., 14, 192195.
[29]Hrbáčková, M., 1974. The size of primipae and neonates of Daphnia hyalina Leydig (Crustacea, Cladocera) under natural and enriched food conditions. Věstník Československé společnosti zoologické, 38, 98105.
[30]Hülsmann, S. and Mehner, T., 1997. Predation by underyearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshwater Biol., 38, 209219.
[31]Jeffries, M., 1988. Individual vulnerability to predation: the effect of alternative prey types. Freshwater Biol., 19, 4956.
[32]Kolar, C.S. and Wahl, D.H., 1998. Daphnid morphology deters fish predators. Oecologia, 116, 556564.
[33]Kubečka, J., 1989. Development of the ichtyofauna of the Římov Reservoir and its management. Arch. Hydrobiol. Beih. Ergebn. Limnol., 33, 611613.
[34]Kubečka, J., Sed'a, J. and Matěna, J., 1998. Fish-zooplankton interactions during spring in a deep reservoir. Int. Rev. Hydrobiol., 83, 431442.
[35]Kurmayer, R. and Wanzenböck, J., 1996. Top-down effects of underyearling fish on a phytoplankton community. Freshwater Biol., 36, 599609.
[36]Macháček, J. and Sed'a, J., 1998. Spatio-temporal changes of morphological and life-history parameters in Daphnia galeata in a canyon-shaped dam lake. Int. Rev. Hydrobiol., 83, 171178.
[37]Manca, M., Vijverberg, J., Polishchuk, L.V. and Voronov, D.A., 2008. Daphnia body size and population dynamics under predation by invertebrate and fish predators in Lago Maggiore: an approach based on contribution analysis. J. Limnol., 67, 1521.
[38]Mehner, T. and Thiel, R., 1999. A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environ. Biol. Fish., 56, 169181.
[39]Nicolle, A., Hansson, L.-A., Brodersen, J., Nilsson, P.A. and Brönmark, C., 2011. Interactions between predation and resources shape zooplankton population dynamics. PLoS ONE, 6, e16534.
[40]Persson, L. and Greenberg, L.A., 1990. Optimal foraging and habitat shift in perch (Perca fluviatilis) in a resource gradient. Ecology, 71, 16991713.
[41]Persson, L., Diehl, S., Johansson, L., Andersson, G. and Hamrin, S.F., 1991. Shifts in fish communities along the productivity gradient of temperate lakes – patterns and the importance of size-structured interactions. J. Fish Biol., 38, 281293.
[42]Peterka, J. and Matěna, J., 2009. Differences in feeding selectivity and efficiency between young-of-the-year European perch (Perca fluviatilis) and roach (Rutilus rutilus) – field observations and laboratory experiments on the importance of prey movement apparency vs. evasiveness. Biologia, 64, 786794.
[43]Post, J.R. and McQueen, D.J., 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biol., 17, 7989.
[44]Reynolds, C.S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 535 p.
[45]Sed'a, M., Kolářová, K., Petrusek, A. and Macháček, J., 2007. Daphnia galeata in the deep hypolimnion: spatial differentiation of a “typical epilimnetic” species. Hydrobiologia, 594, 4757.
[46]Ślusarczyk, M., 1997. Impact of fish predation on a small-bodied cladoceran: limitation or stimulation? Hydrobiologia, 342–343, 215221.
[47]Šorf, M., Brandl, Z., Znachor, P. and Vašek, M., 2013. Floating large-volume mesocosms as a simple, low-cost experimental design suitable for the variety of lakes and reservoirs. Fundam. Appl. Limnol., 183, 4148.
[48]Straile, D. and Halbich, A., 2000. Life history and multiple antipredator defenses of an invertebrate pelagic predator, Bythotrephes longimanus. Ecology, 81, 150163.
[49]Straškraba, M., 1964. Preliminary results of a new method for the quantitative sorting of freshwater net plankton into main groups. Limnol. Oceanogr., 9, 268270.
[50]Vanni, M.J. and Layne, C.D., 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology, 78, 2140.
[51]Vašek, M. and Kubečka, J., 2004. In situ diel patterns of zooplankton consumption by subadult/adult roach Rutilus rutilus, bream Abramis brama, and bleak Alburnus alburnus. Folia Zool., 53, 203214.
[52]Vašek, M., Kubečka, J. and Sed'a, J., 2003. Cyprinid predation on zooplankton along the longitudinal profile of a canyon-shaped reservoir. Arch. Hydrobiol., 156, 535550.
[53]Vašek, M., Kubečka, J., Matěna, J. and Seďa, J., 2006. Distribution and diet of 0+ fish within a canyon-shaped European reservoir in late summer. Int. Rev. Hydrobiol., 91, 178194.
[54]Wallace, R. L., Snell, T. W., Ricci, C. and Nogrady, T., 2006. Rotifera. Volume 1: Biology, Ecology and Systematics., Backhuys Publishers and Kenobi Publishers.
[55]Werner, E.E. and Hall, D.J., 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology, 55, 10421052.
[56]Wojtal, A., Frankiewicz, P., Wagner-Lotkowska, I. and Zalewski, M., 2004. The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir. Hydrobiologia, 515, 123135.
[57]Wojtal, A., Frankiewicz, P., Andziak, M. and Zalewski, M., 2007. The influence of invertebrate predators on Daphnia spatial distribution and survival in laboratory experiments: support for Daphnia horizontal migration in shallow lakes. Int. Rev. Hydrobiol., 92, 2332.
[58]Young, S. and Taylor, V.A., 1998. Visually guided chases in Polyphemus pediculus. J. Exp. Biol., 137, 387398.
[59]Znachor, P., Zapomělová, E., Řeháková, K., Nedoma, J. and Šimek, K., 2008. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquat. Sci., 70, 7786.


Related content

Powered by UNSILO

Different effects of planktonic invertebrate predators and fish on the plankton community in experimental mesocosms

  • Michal Šorf (a1), Zdeněk Brandl (a1), Petr Znachor (a1) (a2) and Mojmír Vašek (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.