Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-07T01:45:49.189Z Has data issue: false hasContentIssue false

Aquatic vegetation as an indicator of littoral habitats and various stages of lake aging in north-eastern Poland

Published online by Cambridge University Press:  04 July 2011

Stanisław Kłosowski*
Affiliation:
Department of Plant Ecology and Environmental Conservation, University of Warsaw, Al. Ujazdowskie 4, 00-478, Warsaw, Poland
Ewa Jabłońska
Affiliation:
Department of Plant Ecology and Environmental Conservation, University of Warsaw, Al. Ujazdowskie 4, 00-478, Warsaw, Poland
Marcin Szańkowski
Affiliation:
Department of Plant Ecology and Environmental Conservation, University of Warsaw, Al. Ujazdowskie 4, 00-478, Warsaw, Poland
*
*Corresponding author: s.klosowski@uw.edu.pl
Get access

Abstract

The habitats of 356 phytocoenoses dominated by 15 species of aquatic plants were investigated. Among the properties of water, Na+, pH, total Fe, Ca2+, NO3, SO42−, hardness and COD-KMnO4 were the most important in differentiating the habitats of the phytocoenoses studied. Considerable physicochemical differences were found between the waters of the phytocoenoses of Ranunculus circinatus (hard waters rich in Na+), Nuphar pumila (soft waters with high levels of total Fe), Elodea canadensis, Ceratophyllum demersum (alkaline waters) and Stratiotes aloides (waters containing high concentrations of Ca2+ and SO42−). The substrate properties that best differentiated the habitats compared were PO43−, hydration, organic matter content, total N, dissolved SiO2, Ca2+, Na+ and pH. Patches of R. circinatus inhabited substrates containing the highest levels of PO43−. Those of S. aloides were associated with substrates poor in PO43−. Patches of C. demersum were confined to substrates rich in total N. Phytocoenoses of R. circinatus were associated with large lakes, whereas those of N. pumila were restricted mostly to smaller lakes. The deepest parts of lakes were inhabited by Potamogeton lucens. Phytocoenoses of S. aloides occurred mostly in shallow waters, on thick sediments. The investigated phytocoenoses also represent different stages of succession. The phytocoenoses of Potamogeton perfoliatus, R. circinatus, Myriophyllum spicatum and Polygonum amphibium, which develop on mineral substrates, initiate the process of succession, whereas those of Myriophyllum verticillatum, Nymphaea candida, Nymphaea alba, N. pumila and S. aloides, which inhabit highly hydrated organic substrates, are characteristic of the late stages of succession.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arts, G.H.P., 2002. Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquat. Bot., 73, 373393.CrossRefGoogle Scholar
Arts, G.H.P., Van der Velde, G., Roelofs, J.G.M. and Van Swaay, C.A.M., 1990. Successional changes in the soft-water macrophyte vegetation of (sub)atlantic, sandy lowland regions during this century. Freshwater Biol., 24, 287294.CrossRefGoogle Scholar
Barko, J.W. and Smart, R.M., 1983. Effect of organic matter additions to sediment on the growth of aquatic plants. J. Ecol., 71, 161175.CrossRefGoogle Scholar
Barko, J.W. and Smart, R.M., 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology, 67, 13281340.CrossRefGoogle Scholar
Barko, J.W., Gunnison, D. and Carpenter, S.R., 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot., 41, 4165.CrossRefGoogle Scholar
Blindow, H., 1992. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biol., 28, 914.CrossRefGoogle Scholar
Carpenter, S.R. and Lodge, D.M., 1986. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot., 26, 341370.CrossRefGoogle Scholar
Chambers, P.A., Lacoul, P. and Murphy, K.J., 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595, 926.CrossRefGoogle Scholar
De Lyon, M.J.H. and Roelofs, J.G.M., 1986a. Waterplanten in relatie tot waterkwaliteit en bodemgesteldheid. Deel 1. Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, 106 p.Google Scholar
De Lyon, M.J.H. and Roelofs, J.G.M., 1986b. Waterplanten in relatie tot waterkwaliteit en bodemgesteldheit. Deel 2. Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, 126 p.Google Scholar
Del Pozo, R., Fernandes-Alez, C. and Fernandez-Alez, M., 2010. An assessment of macrophyte community metrics in the determination of the ecological condition and total phosphorus concentration of Mediterranen ponds. Aquat. Bot., 92, 5562.CrossRefGoogle Scholar
Doll, R., 1991. Die Pflanzengesellschaften der stehenden Gewässer in Mecklemburg-Vorpommern. Teil I.3. Potamogetonetea Tx. Et Prsg. 42. Laichkrautgesellschaften. Feddes Repert., 102, 217317.CrossRefGoogle Scholar
Egerston, C.J., Kopaska, J.A. and Downing, J.A., 2004. A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia, 524, 145156.Google Scholar
European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official J. Eur. Com., L327, 172.
Free, G., Bowman, J., McGarrigle, M., Caroni, R., Donnelly, K., Tierney, D., Trodd, W. and Little, R., 2009. The identification, characterization and conservation value of isoetid lakes in Ireland. Aquat. Conserv.: Mar. Freshwater Ecosyst., 19, 264273.CrossRefGoogle Scholar
Gaudet, J.J. and Muthuri, F.M., 1981. Nutrient relationships in shallow water in an African Lake. Lake Naivasha. Oecologia (Berlin), 49, 109118.CrossRefGoogle Scholar
Hach Company, 1992. Hach Water Analysis Handbook, Hach Co., Loveland, Colorado, 831 p.
Heegaard, E., Briks, H.H., Gibson, C.E., Smith, S.J. and Wolfe-Murphy, S., 2001. Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquat. Bot., 70, 175123.CrossRefGoogle Scholar
Hermanowicz, W., Dożańska, W., Dojlido, J. and Koziorowski, B., 1999. Fizyczno-chemiczne badanie wody i ścieków, Arkady, Warszawa, 847 p.Google Scholar
Hinneri, S., 1976. On the ecology and phenotypic plasticity of vascular hydrophytes in a sulphate-rich, acidotrophic freshwater reservoir, SW coast of Finland. Ann. Bot. Fenn., 13, 97105.Google Scholar
Jackson, S.T. and Charles, D.F., 1988. Aquatic macrophytes in Adirondack (New York) lakes: pattern of species composition in relation to environment. Can. J. Bot., 66, 14491460.CrossRefGoogle Scholar
James, W.F. and Barko, J.W., 1990. Macrophhyte influences on the zonation of sediment accretion and composition in a north-temperature reservoir. Arch. Hydrobiol., 120, 129142.Google Scholar
Jongman, R.H.G., Ter Braak, C.J.F. and Van Tongeren, O.F.R., 1987. Data Analysis in Communities and Landscape Ecology, Pudoc. Wageningen, The Netherlands. Reissued in 1995 by Cambridge University Press, Cambridge, xix+299 p.Google Scholar
Kadono, Y., 1982. Occurrence of aquatic macrophytes in relation to pH, alkalinity, Ca++, Cl and conductivity. Japan. J. Ecol., 32, 3944.Google Scholar
Kłosowski, S., 1985. Habitat conditions and bioindicator value of the main communities of aquatic vegetation in north-east Poland. Pol. Arch. Hydrobiol., 32, 729.Google Scholar
Kłosowski, S., 1990. Litoralvegetation stehender Gewässer–Ökologie, Dynamik und Bioindikationswert. Pol. Bot. Stud., 1, 149184.Google Scholar
Kłosowski, S., 1992. Temporal and spatial variation of habitat conditions in the zonation of littoral plant communities. Aquat. Bot., 43, 199208.CrossRefGoogle Scholar
Kłosowski, S., 2006. The relationships between environmental factors and the submerged Potametea associations in lakes od north-eastern Poland. Hydrobiologia, 560, 1529.CrossRefGoogle Scholar
Kłosowski, S. and Jabłońska, E., 2009. Aquatic and swamp plant communities as indicators of operties of astatic water bodies in north-eastern Poland. Limnologica, 39, 115127.CrossRefGoogle Scholar
Kłosowski, S. and Tomaszewicz, H., 1990. Standortverhältnisse des Nupharetum pumili Oberdorfer 1957 in der Suwałki-Seenplatte (Nord-Ostpolen). Arch. Hydrobiol., 117, 365382.Google Scholar
Kozlowski, G. and Eggenberg, S., 2005. Vorkommen der Kleinen Teichrose Nuphar pumila und des Hybrids Nintermedia in der Schweiz. Bot. Helv., 115, 125136.CrossRefGoogle Scholar
Kunii, H., 1991. Aquatic macrophyte composition in relation to environmental factors of irrigation ponds around Lake Shinji, Shimane, Japan. Vegetation, 97, 137148.CrossRefGoogle Scholar
Lacoul, P. and Freedman, B., 2006. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquat. Bot., 84, 316.CrossRefGoogle Scholar
Lind, C.T. and Cottam, G., 1969. The submerged aquatics of University Bay: a study of eutrophication. Am. Mid. Nat., 81, 353369.CrossRefGoogle Scholar
Lorens, B., Grądziel, T. and Sugier, P., 2003. Changes in vegetation of restored water-land ecotone of Lake Bikcze (Polesie Lubelskie Region, Eastern Poland) in the years 1993–1998. Pol. J. Ecol., 51, 175182.Google Scholar
Lukács, B.A., Dévai, G. and Tóthmérész, B., 2009. Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along the Upper-Tisza river (in Hungary). Phytocoenologia, 39, 287293.CrossRefGoogle Scholar
Lumbreras, A., Olives, A., Quintana, J.R., Pardo, K. and Molina, J.A., 2008. Ecology of aquatic Ranunculus communities under the Mediterranen climate. Aquat. Bot., 90, 5966.CrossRefGoogle Scholar
Mäemets, H., Palmik, K., Haldna, M., Sudnitsyna, D. and Melnik, M., 2010. Eutrophication and macrophyte species richness in the large shallow North-European Lake Pepsi. Aquat. Bot., 92, 273280.CrossRefGoogle Scholar
Mäkelä, S., Huitu, E. and Arvola, L., 2004. Spatial patterns in aquatic vegetation composition and environmental covariates along chains of lakes in the Kokemänjoki watershed (S. Finland). Aquat. Bot., 80, 253269.CrossRefGoogle Scholar
Marek, S., 1992. Transformation of lakes in mires. Acta Soc. Bot. Pol., 61, 103113.CrossRefGoogle Scholar
McElarney, Y.R. and Rippey, B., 2009. A comparison of lake classifications based on aquatic macrophytes and physicaland chemical water body descriptors. Hydrobiologia, 625, 195206.CrossRefGoogle Scholar
Melzer, A., 1999. Aquatic macrophytes as tools for lake management. Hydrobiologia, 395/396, 181190.CrossRefGoogle Scholar
Misra, R.D., 1938. Edaphic factors in the distribution of aquatic plants in the English lakes. J. Ecol., 26, 411451.CrossRefGoogle Scholar
Misztal, M., Smal, H., Ligęza, S. and Dymińska-Wydra, P., 2003. Influence of land-lake ecotone on minera land organic compounds in groundwater and lake water. Pol. J. Ecol., 51, 129136.Google Scholar
Moyle, J.B., 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. Am. Midl. Nat., 34, 400420.CrossRefGoogle Scholar
Nurminen, L., 2003. Macrophyte species composition reflecting water quality changes in adjacent water bidues of lake Hiiddenvesi, SW Finland. Ann. Bot. Fenn., 40, 199208.Google Scholar
Nõges, P. and Kisand, A., 1999. Horizontal distribution of sediment phosphorus in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia, 408/409, 167174.CrossRefGoogle Scholar
Papastergiadou, E. and Babalonas, D., 1993a. The relationships between hydrochemical environmental factors and the aquatic macrophytic vegetation in stagnant and slow flowing waters. I. Water quality and distriburion of aquatic associations. Arch. Hydrobiol., Suppl., 90, 475491.Google Scholar
Papastergiadou, E. and Babalonas, D., 1993b. The relationships between hydrochemical environmental factors and the aquatic macrophytic vegetation in stagnant and slow flowing waters. II. Evaluation of plant associations indicative value. Arch. Hydrobiol., Suppl., 90, 493506.Google Scholar
Penning, W.E., Mjelde, M., Dudley, B., Hellsten, S., Hanganu, J., Kolada, A., Van den Berg, M., Mäemets, H., Poikane, S., Philips, G., Willby, N. and Ecke, F., 2008a. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquat. Ecol., 42, 237251.CrossRefGoogle Scholar
Penning, W.E., Dudley, B., Mjelde, M., Hellsten, S., Hanganu, J., Kolada, A., Van den Berg, M., Mäemets, H., Poikane, S., Philips, G., Willby, N. and Ecke, F., 2008b. Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquat. Ecol., 42, 253264.CrossRefGoogle Scholar
Pieczyńska, E., 1972. Ecology of the eulittoral zone of lakes. Ekol. Pol., 20, 637732.Google Scholar
Pietsch, W., 1972. Ausgewälte beispiele für Indikatoreigenschaften höherer Wasserpflanzen. Arch Naturschutz u. Landschaftsforsch., 12, 121151.Google Scholar
Pietsch, W., 1982. Makrophytische Indikatoren für ökochemische Beschaffenheit der Gewässer. In: Breitig, G. and Tümpling, W. (eds.), Ausgewählte Methoden der Wasseruntersuchung, Bd 2, Gustav Fischer Verlag, Jena, 6788.Google Scholar
Pip, E., 1988. Niche congruency of aquatic macrophytes in central North America with respect to 5 water chemistry parameters. Hydrobiologia, 162, 173182.CrossRefGoogle Scholar
Planter, M., 1973. Physical and chemical conditions in the helophytes zone of the lake littoral. Pol. Arch. Hydrobiol., 20, 17.Google Scholar
Rejewski, M., 1981. Roślinność jezior rejonu Laski w Borach Tucholskich, Uniwersytet Mikołaja Kopernika, Toruń, 178 p.Google Scholar
Roelofs, J.G.M., 1983. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. Aquat. Bot., 17, 139155.CrossRefGoogle Scholar
Roweck, H., 1988. Ökologische Untersuchungen an Teichrosen. Arch. Hydrobiol., Suppl., 81, 103358.Google Scholar
Sand-Jensen, K., Tenna, R., Vesterrgaard, O. and Larsen-Soren, E., 2000. Macrophyte decline in Danish lakes and streams over the past 1000 years. J. Ecol., 88, 10301040.CrossRefGoogle Scholar
Sass, L., Bozek, M.A., Hauxwell, J.A., Wagner, K. and Knight, S., 2010. Response of aquatic macrophytes to human land use perturbation in the watersheds of Wisconsin lakes, U.S.A. Aquat. Bot., 93, 18.CrossRefGoogle Scholar
Schamburg, J., Schranz, C., Hofmann, G., Stelzer, D. and Schneider, S., 2004. Macrophytes and phytobenthos as indicators of ecological status in German lakes – a contribution to the implementation of the Water Framework Directive. Limnologica, 34, 302314.CrossRefGoogle Scholar
Schmieder, K. and Lehmann, A., 2004. A spatio-temporal framework for efficient inventories of natural resources: A case study with submersed macrophytes. J. Veg. Sci., 15, 807816.CrossRefGoogle Scholar
Schneider, S., 2007. Macrophyte trophic indicator values from a European perspective. Limnologica, 37, 281289.CrossRefGoogle Scholar
Smits, A.J.M., De Lyon, M.J.H., Van der Velde, G., Steentjes, P.L.M. and Roelofs, J.G.M., 1988. Distribution of three nymphaeid macrophytes (Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze) in relation to alkalinity and uptake of inorganic carbon. Aquat. Bot., 32, 4562.CrossRefGoogle Scholar
Spence, D.H.N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol., 55, 147170.CrossRefGoogle Scholar
Spence, D.H.N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res., 12, 37125.CrossRefGoogle Scholar
Szańkowski, M. and Kłosowski, S., 2001. Habitat conditions of the phytocoenoses dominated by Luronium natans (L.) Rafin in Poland. Hydrobiologia, 455, 213222.CrossRefGoogle Scholar
Szańkowski, M. and Kłosowski, S., 2006. Habitat variability of the Littorelletea uniflorae plant communities in Polish Lobelia lakes. Hydrobiologia, 570, 117126.CrossRefGoogle Scholar
Ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for nultivariate direct gradient analysis. Ecology, 67, 11671179.CrossRefGoogle Scholar
Ter Braak, C.J.F. and Šmilauer, P., 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows. Software for Canonical Community Ordination (version 4), Centre for Biometry, Wageningen & Ithaca, Microcomputer Power, New York.Google Scholar
Toivonen, H. and Huttunen, P., 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquat. Bot., 51, 197221.CrossRefGoogle Scholar
Tomaszewicz, H., 1979. Roślinność wodna I szuwarowa Polski (klasy Lemnetea, Charetea, Potamogetonetea, Phragmitetea) według stanu zbadania na rok 1975. Rozpr. Uniw. Warsz., 160, 1325.Google Scholar
Tóth, L.G., Poikane, S., Penning, E.W., Free, G., Mäemets, H., Kolada, A. and Hanganu, J., 2008. First steps in the Central-Baltic intercalibration exercise on lake macrophytes: where do we start? Aquat. Ecol., 42, 265275.CrossRefGoogle Scholar
Úlehlová, B. and Pribil, S., 1978. Water chemistry in the fishpond littorals. In: Dykyjová, D. and Kvĕt, J. (eds.), Pond Littoral Ecosystems. Structure and Functioning, Ecological Studies, 28, Springer, Berlin, 126140.CrossRefGoogle Scholar
Van der Velde, G., Custers, C.P.C. and De Lyon, M.J.H., 1986. The distribution of four nymphaeid species in the Netherlands in relation to selected abiotic factors. In: Proceedings EWRS/AAB, 7th Symposium on Aquatic Weeds, 363368.Google Scholar
Van Groenendael, J.M., Roepers, R.G., Woltjer, I. and Zweers, H.R., 1996. Vegetation succession in lakes of West Connemara, Ireland: comparing predicted and actual changes. J. Veg. Sci., 7, 211218.CrossRefGoogle Scholar
Van Katwijk, M.M. and Roelofs, J.G.M., 1988. Vegetaties van waterplanten in relatie tot het milieu, Laboratorium voor Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, 133 p.Google Scholar
Vestergaard, O. and Sand-Jensen, K., 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat. Bot., 67, 85107.CrossRefGoogle Scholar
Wiegleb, G., 1978. Untersuchungen über den Zusammenhang zwischen hydrochemischen Umveltfaktoren und Makrophytenvegetation in stehenden Gewässern. Arch. Hydrobiol., 83, 443484.Google Scholar
Wilcox, D.A. and Simonin, H.A., 1987. A chronosequence of aquatic macrophyte communities in dune ponds. Aquat. Bot., 28, 227242.CrossRefGoogle Scholar
Willby, N.L., Abernethy, V.J. and Demars, B.O.L., 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biol., 43, 4374.CrossRefGoogle Scholar
Zar, J.A., 1984. Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 718 p.Google Scholar
Supplementary material: PDF

OLM 1 - limn10059 - 47(3) 2011 p.281 - Aquatic vegetation as an indicator ...

Appendix 1

Download OLM 1 - limn10059 - 47(3) 2011 p.281 - Aquatic vegetation as an indicator ...(PDF)
PDF 79.4 KB
Supplementary material: PDF

OLM 2 - limn10059 - 47(3) 2011 p.281 - Aquatic vegetation as an indicator ...

Appendix 2

Download OLM 2 - limn10059 - 47(3) 2011 p.281 - Aquatic vegetation as an indicator ...(PDF)
PDF 74.4 KB