Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T00:29:42.614Z Has data issue: false hasContentIssue false

Periphytic algae colonization driven by variable environmental components in a temperate floodplain lake

Published online by Cambridge University Press:  22 August 2013

Tanja Žuna Pfeiffer
Affiliation:
Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
Melita Mihaljević*
Affiliation:
Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
Filip Stević
Affiliation:
Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
Dubravka Špoljarić
Affiliation:
Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
*
*Corresponding author: mmihaljevic@biologija.unios.hr
Get access

Abstract

The colonization of periphytic algae in a temperate floodplain was studied in Lake Sakadaš, a part of a fluvial floodplain along the Danube River. An in situ investigation, using artificial substrata, was started after extremely high spring flooding and was carried out during long-lasting summer floods (July–August 2010). The physical and chemical environment was variable and large stands of metaphyton, submersed and floating macrophytes were spread along the lake. The periphyton development was initiated on the first day of exposition and algal abundance increased exponentially till day 27. Directional changes in the relative abundance of algal species, shown by the results of the non-metric multidimensional scaling, indicate a pattern of short-term sequences in algal colonization. The initial attachment of planktonic cyanobacteria and unicellular diatoms (initial phase, days 1–3) to the biofilm matrix was followed by the development of the filamentous chlorophytes, Cladophora glomerata and Oedogonium spp. (intermediate phase, days 6–15) and then by stalk-forming diatoms particularly Gomphonema spp. (late phase, days 18–33). According to the redundancy analyses, water temperature and oscillations of Danube water level that define the flooding pattern had the most significant influence on algal colonization. Flood-induced spreading of metaphyton firstly supported the rapid progress of algal colonization towards a climax community, while later, metaphyton together with macrophytes disrupted algal community by increasing the mechanical injuries, shading and grazing pressure. Consequently, algal abundance and community structure were returned to the intermediate phase of colonization.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ács, É. and Kiss, K.T., 1993. Colonization processes of diatoms on artificial substrates in the River Danube near Budapest (Hungary). Hydrobiologia, 269/270, 307315.CrossRefGoogle Scholar
Ács, É., Kiss, K.T., Szabó, K. and Makk, J., 2000. Short-term colonization sequence of periphyton on glass slides in a large river (River Danube, near Budapest). Arch. Hydrobiol. Suppl. Algol. Stud., 100, 135156.Google Scholar
Ács, É., Borsodi, A.K., Kröpfl, K., Vladár, P. and Záray, G., 2007. Changes in the algal composition, bacterial metabolic activity and element content of biofilms developed on artificial substrata in the early phase of colonization. Acta Bot. Croat., 66, 89100.Google Scholar
Addisie, Y. and Medellin, A.C., 2012. Allelopathy in aquatic macrophytes: effects on growth and physiology of phytoplanktons. Afr. J. Plant Sci., 6, 270276.Google Scholar
Albay, M. and Akçaalan, R., 2003. Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia, 506–509, 531540.CrossRefGoogle Scholar
Algarte, V.M., Siqueira, N.S., Murakami, E.A. and Rodrigues, L., 2009. Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. Braz. J. Biol., 69, 609616.CrossRefGoogle Scholar
Anagnostidis, K. and Komárek, J., 1985. Modern approach to the classification system of cyanophytes. 1. Introduction. Arch. Hydrobiol. Suppl., 71, 291302.Google Scholar
Anagnostidis, K. and Komárek, J., 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol. Suppl., 80, 327472.Google Scholar
APHA, 1992. Standard Methods for the Examination of Water and Wastewater, 18th edn, American Public Health Association, Washington, DC, 1268 p.PubMed
Azim, M.E. and Asaeda, T., 2005. Periphyton: structure, diversity and colonization. In: Azim, M.E., Verdegem, M.C.J., van Dam, A.A. and Beveridge, M.C.M. (eds.), Periphyton: Ecology, Exploitation and Management, CABI Publishing, Wallingford, 1534.Google Scholar
Azim, M.E., Beveridge, M.C.M., van Dam, A.A. and Verdegem, M.C.J., 2005. Periphyton and aquatic production: an introduction. In: Azim, M.E., Verdegem, M.C.J., van Dam, A.A. and Beveridge, M.C.M. (eds.), Periphyton: Ecology, Exploitation and Management, CABI Publishing, Wallingford, 113.Google Scholar
Bahulikar, R.A., 2006. Diatoms from littoral zone of Lake Constance: Diversity, phylogeny, extracellular polysaccharides and bacterial associations. Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz, Fachbereich Biologie, Konstanz, 114.Google Scholar
Biggs, B.J.F., Stevenson, R.J. and Lowe, R.L., 1998. A habitat matrix conceptual model for stream periphyton. Arch. Hydrobiol., 143, 2156.CrossRefGoogle Scholar
Borcard, D., Legendre, P. and Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology, 73, 10451055.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M., 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth, 177 p.Google Scholar
Dodds, K.W. and Gudder, A.D., 1992. The ecology of Cladophora. J. Phycol., 28, 415427.CrossRefGoogle Scholar
Felisberto, S.A. and Rodrigues, L., 2010. Periphytic algal community in artificial and natural substratum in a tributary of the Rosana reservoir (Corvo Stream, Paraná State, Brazil). Acta Sci. Biol. Sci., 32, 373385.CrossRefGoogle Scholar
Ferreira, F.A., Mormul, R.P., Thomaz, S.M., Pott, A. and Pott, V.J., 2011. Macrophytes in the upper Paraná river floodplain: checklist and comparison with other large South American wetlands. Rev. Biol. Trop. (Int. J. Trop. Biol.), 59, 541556.Google ScholarPubMed
Gaiser, E.E., Scinto, L.J., Richards, J.H., Jayachandran, K., Childers, D.L., Trexler, J.C. and Jones, R.D., 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Wat. Res., 38, 507516.CrossRefGoogle Scholar
Goldsborough, L.G. and Robinson, G.G.C., 1996. Patterns in wetlands. In: Stevenson, R.J., Bothwell, M.L. and Lowe, R.L. (eds.), Algal Ecology. Freshwater Benthic Ecosystems, Academic Press, USA, 78120.Google Scholar
Gottlieb, A.D., Richards, J.H. and Gaiser, E.E., 2006. Comparative study of periphyton community structure in long and short hydroperiod Everglades marshes. Hydrobiologia, 569, 195207.CrossRefGoogle Scholar
Gross, E.M., Erhard, D. and Iványi, E., 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia, 506, 583589.CrossRefGoogle Scholar
Guasch, H., Admiraal, W. and Sabater, S., 2003. Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat. Toxicol., 64, 165175.CrossRefGoogle ScholarPubMed
Higgins, S. and Hann, B.J., 1995. Snail grazer-periphyton interactions: the effects of macrophyte removal, inorganic nutrient addition, and organic nutrient addition. UFS (Delta Marsh) Annual Report, 30, 2837.Google Scholar
Higgins, S.N., Malkin, S.Y., Howell, E.T., Guildford, S.J., Campbell, L., Hiriart-Baer, V. and Hecky, R.E., 2008. An Ecological Review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes. J. Phycol., 44, 839854.CrossRefGoogle ScholarPubMed
Hindak, F., Cyrus, Z., Marvan, P., Javornicky, P., Komarek, J., Etll, H., Rosa, K., Sladečkova, A., Popovsky, J., Punčocharova, M. and Lhotsky, O., 1978. Slatkovodne riasy. Slovenske pedagogicke nakladelstvo, Bratislava.Google Scholar
Hoagland, K.D., Roemer, S.C. and Rosowski, J.R., 1982. Colonization and community structure of two periphyton assemblages with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot., 69, 188213.CrossRefGoogle Scholar
Horvatić, J., Mihaljević, M. and Stević, F., 2003. Algal growth potential of Chlorella kessleri Fott et Nov. in comparison with in situ microphytoplankton dynamics in the water of Lake Sakadaš marshes. Period. Biol., 105, 307312.Google Scholar
Huber-Pestalozzi, G., 1942. Das Phytoplankton des Süßwassers. Systematik und Biologie. Teil. 2. – E. Schweizerbart'śche Verlagsbuchhandlung (Erwin Nägele), Stuttgart.
Hustedt, F., 1976. Bacillariophyta, Otto Koeltz Science Publishers, Koenigstein.Google Scholar
Jones, I.J. and Sayer, C.D., 2003. Does the fish – invertebrate – periphyton cascade precipitate plant loss in shallow lakes? Ecology, 84, 21552167.CrossRefGoogle Scholar
Komárek, J. and Anagnostidis, K., 1989. Modern approach to the classification system of cyanophytes. 4. Nostocales. Algol. Stud., 56, 247345.Google Scholar
Komárková, J., 1989. Primárni produkce ř as ve slatkovodních ekosysteméch. In: Dykyová, D. (ed.), Metody studia ecosystémů, Academia Praha, Praha, 330347.Google Scholar
Lakatos, G., 1989. Composition of reed periphyton (biotecton) in the Hungarian part of lake Fertö. Biol. Forschun., 71, 125134.Google Scholar
Lepš, J. and Šmilauer, P., 2003. Multivariate Analysis of Ecological Data using Canoco, Cambridge University Press, Cambridge, 267 p.CrossRefGoogle Scholar
Liboriussen, L., 2003. Production, regulation and ecophysiology of periphyton in shallow freshwater lakes. PhD thesis. National Environmental Research Institute, Department of Freshwater Ecology, Faculty of Science, University of Aarhus, Denmark, 47 p.Google Scholar
Liboriussen, L., Jeppesen, E., Bramm, M.E. and Lassen, M.F., 2005. Periphyton-macroinvertebrate interactions in light and fish manipulated enclosures in a clear and a turbid shallow lake. Aquat. Ecol., 39, 2339.CrossRefGoogle Scholar
MacArthur, R.H. and Wilson, E.O., 1963. An equilibrium theory of insular zoogeography. Evolution, 17, 373387.CrossRefGoogle Scholar
Meerhoff, M., 2006. The structuring role of macrophytes on trophic dynamics in shallow lakes under a climate-warming scenario. PhD thesis. Faculty of Science, University of Aarhus, Denmark.Google Scholar
Mihaljević, M. and Stević, F., 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat. Ecol., 45, 335349.CrossRefGoogle Scholar
Mihaljević, M. and Žuna Pfeiffer, T., 2012. Colonization of periphyton algae in a temperate floodplain lake under a fluctuating spring hydrological regime. Fundam. Appl. Limnol., 180, 1325.Google Scholar
Mihaljević, M., Getz, D., Tadić, Z., Živanović, B., Gucunski, D., Topić, J., Kalinović, I. and Mikuska, J., 1999. Kopački Rit – Research Survey and Bibliography, Croatian Academy of Arts and Sciences, Zagreb, 188 p.Google Scholar
Mihaljević, M., Stević, F., Horvatić, J. and Hackenberger Kutuzović, B., 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia, 618, 7788.CrossRefGoogle Scholar
Morin, S., Pesce, S., Tlili, A., Coste, M. and Montuelle, B., 2010. Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecol. Indic., 10, 419426.CrossRefGoogle Scholar
Murakami, E.A., Bicudo, D.C. and Rodrigues, L., 2009. Periphytic algae of the Garças Lake, Upper Paraná River floodplain: comparing the years 1994 and 2004. Braz. J. Biol., 69, 459468.CrossRefGoogle ScholarPubMed
Rodrigues, L. and Bicudo, D.C., 2001. Similarity among periphyton algal communities in a lentic-lotic gradient of the upper Paraná river floodplain, Brazil. Revta Brasil. Bot., 24, 235248.Google Scholar
Sekar, R., Venugopalan, V.P., Nandakumar, K., Nair, K.V.K. and Rao, V.N.R., 2004. Early stages of biofilm succession in a lentic freshwater environment. Hydrobiologia, 512, 97108.CrossRefGoogle Scholar
Stenger-Kovács, C., Padisák, J. and Bíró, P., 2006. Temporal variability of Achnanthidium minutissimum (Kützing) Czarnecki and its relationship to chemical and hydrological features of the Torna-stream, Hungary. In 6th Int. Symposium on Use of algae for monitoring rivers. Hungary, Balatonfüred.
Stilinović, B. and Plenković-Moraj, A., 1995. Bacterial and phytoplanktonic research of Ponikve artificial lake on the island of Krk. Period. Biol., 97, 351358.Google Scholar
Szabó, K.E., Makk, J., Kiss, K.T., Eiler, A., Ács, Ė., Tóth, B., Kiss, Á.K. and Bertilsson, S., 2008. Sequential colonization of river periphyton analysed by microscopy and molecular fingerprinting. Freshwat. Biol., 53, 13591371.CrossRefGoogle Scholar
Tockner, K., Malard, F. and Ward, J.V., 2000. An extension of the flood pulse concept. Hydrol. Process., 14, 28612883.3.0.CO;2-F>CrossRefGoogle Scholar
Toet, S., Hersbach, L. and Verhoeven, J.T.A., 2003. Periphyton biomass and nutrient dynamics in a treatment wetland in relation to substratum, hydraulic retention time and nutrient removal. Arch. Hydrobiol. Suppl., 139, 361392.Google Scholar
Ward, J.V. and Stanford, J.A., 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul. Rivers Res. Manage., 11, 105119.CrossRefGoogle Scholar
Zohary, T., Fishbein, T., Kaplan, B. and Pollingher, U., 1998. Phytoplankton-metaphyton seasonal dynamics in a newly-created subtropical wetland lake. Wet. Ecol. Manag., 6, 133142.CrossRefGoogle Scholar