Skip to main content Accessibility help

Effects of phytase and 25-hydroxyvitamin D3 inclusions on the performance, mineral balance and bone parameters of grower–finisher pigs fed low-phosphorus diets

  • J. V. O’Doherty (a1), D. A. Gahan (a1), C. O’Shea (a1), J. J. Callan (a1) and K. M. Pierce (a1)...


Two experiments, a performance experiment and a mineral balance study, were conducted on grower–finisher pigs (42 to 101 kg live weight) to investigate the effects of Peniophora lycii phytase enzyme and 25-hydroxyvitamin D3 (25-OHD3) on growth performance, carcass characteristics, nutrient retention and excretion, and bone and blood parameters. The two experiments were designed as a 2 × 2 factorial (two levels of phytase and two levels of 25-OHD3). The four diets were T1, low-phosphorous diet; T2, T1 + phytase; T3, T1 + 25-OHD3 and T4, T1 + phytase + 25-OHD3 diet. In all, 25 μg of 25-OHD3 was used to replace 1000 IU of vitamin D3 in diets T3 and T4. Diets were pelleted (70°C) and formulated to contain similar concentrations of energy (13.8 MJ DE/kg), lysine (9.5 g/kg) and digestible phosphorus (P; 1.8 g/kg). Neither the inclusion of phytase nor 25-OHD3 in the diet had any effect on pig performance. There was an interaction between phytase and 25-OHD3 on calcium (Ca) and P retention (P < 0.01) and on the apparent digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.001). Pigs offered phytase diets only, had a higher retention of Ca and P and digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.01) compared with pigs offered unsupplemented diets. However, when the combination of phytase and 25-OHD3 were offered, no effects were detected compared with 25-OHD3 diets only. Pigs fed phytase diets had higher bone ash (P < 0.01), bone P (P < 0.01) and bone Ca (P < 0.05) concentrations compared with pigs offered non-phytase diets. In conclusion, pigs offered phytase diets had a significantly increased bone ash, Ca and P than pigs offered unsupplemented phytase diets. However, there was no advantage to offering a combination of phytase and 25-OHD3 on either bone strength or mineral status compared to offering these feed additives separately.


Corresponding author


Hide All
Association of Official Analytical Chemists 1995. Official methods of analysis, 16th edition. AOAC, Washington, DC, USA.
BASF 1991. Phytase: Intensity Facts about Natuphos®. Technical Report Series no. 29, BASF, Ludwigshafen, Germany.
Biehl, RR, Baker, DH 1997. Utilization of phytate and nonphytate phosphorus in chicks as affected by source and amount of vitamin D3. Journal of Animal Science 75, 29862993.
Biehl, RR, Baker, DH, DeLuca, HF 1995. 1{alpha}-Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese utilization in chicks fed soy-based diets. The Journal of Nutrition 125, 24072416.
Biehl, RR, Baker, DH, DeLuca, HF 1998. Activity of various hydroxylated vitamin D3 analogs for improving phosphorus utilisation in chicks recieving diets adequate in vitamin D3. British Poultry Science 39, 408412.
Brady, SM, Callan, JJ, Cowan, D, McGrane, M, O’ Doherty, JV 2002. Effect of phytase inclusion and calcium/phosphorus ratio on the performance and nutrient retention of grower–finisher pigs fed barley/wheat/soya bean meal-based diets. Journal of the Science of Food and Agriculture 82, 17801790.
Brady, SM, Callan, JJ, Cowan, D, McGrane, M, O’ Doherty, JV 2003. Effect of two microbial phytases on the performance and nutrient retention on grower-finisher pigs fed barley-maize-soyabean meal-based diets. Irish Journal of Agricultural and Food Research 42, 101117.
Bruce, JAM, Sundstøl, F 1995. The effect of microbial phytase in diets for pigs on apparent ileal and faecal digestibility, pH and flow of digesta measurements in growing pigs fed a high fibre diet. Canadian Journal of Animal Science 75, 121127.
Cavell, AJ 1955. The spectrophotometric determination of phosphorus in plant material. Journal of the Science of Food and Agriculture 6, 479480.
Close, WH 1994. Feeding new genotypes: establishing amino acid/energy requirements. In Principles of pig science (ed. DJA Cole, J Wiseman and MA Varley), pp. 123140. Nottingham University Press, London.
Cromwell, GL, Hays, VW, Chaney, CH, Overfield, JA 1970. Effects of dietary phosphorus and calcium level on performance, bone mineralization and carcass characteristics of swine. Journal of Animal Science 30, 519525.
Crenshaw, T 1996. Calcium, phosphorus, vitamin D and vitamin K in swine nutrition. In Swine nutrition (ed. A Lewis and LL Southern), pp. 187212. CRC Press, New York, USA.
Department of Agriculture and Food 1994. European Communities (Pig Carcass Grading) (Amendment) Regulations. SI 216. Stationary Office, Dublin.
Edwards, HM 1993. Dietary 1,25-dihydroxycholecalciferol supplementation increases natural phytate phosphorus utilization in chickens. The Journal of Nutrition 123, 567577.
Fiske, CH, Subbarow, Y 1925. The colorimeter determination of phosphorus. The Journal of Biological Chemistry 66, 375400.
Fritts, CA, Waldroup, PW 2003. Effect of source and level of vitamin D on live performance and bone development in growing broilers. The Journal of Applied Poultry Research 12, 4552.
Jongbloed, AW, Morz, Z, Kemme, PA, Geerse, C, Van Der Honing, Y 1993. The effect of dietary calcium levels on microbial phytase efficacy in growing pigs. Journal of Animal Science 71 (suppl. 1), 166 (abstract).
Jørgensen, B 1995. Effect of different energy and protein levels on leg weakness and osteochondrosis in pigs. Livestock Production Science 41, 171181.
Lei, XG, Ku, PK, Miller, ER, Yokoyama, MT, Ullrey, DE 1993. Supplementing corn-soybean meal diets with microbial phytase maximizes phytate phosphorus utilization by weanling pigs. Journal of Animal Science 71, 33683375.
Li, D, Che, X, Wang, Y, Hong, C, Thacker, PA 1998. Effect of microbial phytase, Vitamin D3, and citric acid on growth performance and phosphorus, nitrogen and calcium digestibility in growing swine. Animal Feed Science and Technology 73, 173186.
Maguire, RO, Sims, JT, McGrath, JM, Angel, CR 2003. Effect of phytase and Vitamin D metabolite (25OH-D3) in turkey diets on phosphorus solubility in manure amended soils. Soil Science 168, 421433.
Mattila, P 1995. Analysis of cholecalciferol, ergocalciferol and their 25-hydroxylated metabolites in foods by HPLC, (dissertation), EKT-series 995. Department of Applied Chemistry and Microbiology, University of Helsinki.
Mitchell, RD, Edwards, HM 1996. Additive effects of 1,25-dihydroxycholecalciferol and phytase on phytate phosphorus utilization and related parameters in broiler chickens. Poultry Science 75, 111119.
Mc Donald, P, Edwards, RA, Greenhalgh, JFD, Morgan, CA 2002. Animal nutrition. Pearson Prentice Hall, Essex, London, UK.
Mohammed, A, Gibney, MJ, Taylor, TG 1991. The effects of dietary levels of inorganic phosphorus, calcium and cholecalciferol on the digestibility of phytate-P by the chick. The British Journal of Nutrition 66, 251259.
National Research Council (NRC) 1998. Nutritional requirements of swine, 10th edition. National Academy Press, Washington, DC, USA.
Ravindran, V, Bryden, WL, Kornegay, ET 1995. Phytates: occurrence, bioavailability and implications in poultry nutrition. Poultry and Avian Biology Reviews 6, 125143.
Roberson, KD, Edwards, HM 1994. Effects of 1,25-dihydroxycholecalciferol and phytase on zinc utilization in broiler chicks. Poultry Science 73, 13121326.
Sauvant, D, Perez, JM, Tran, G 2004. Tables of composition and nutritional value of feed materials. Pigs, poultry, cattle, sheep, goats, rabbits, horses, fish. Wageningen Academic Publishers, The Netherlands.
Selle, PH, Ravindran, V 2008. Phytate-degrading enzymes in pig nutrition. Livestock Science 113, 99122.
Simons, PC, Versteegh, HA, Jongbloed, AW, Kemme, PA, Slump, P, Bos, KD, Wolters, MG, Beudeker, RF, Verschoor, GJ 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. The British Journal of Nutrition 64, 525540.
Statistical Analysis Systems Institute 1985. Statistical analysis systems. SAS Institute Inc., Cary, NC, USA.
Stern, S, Lundeheim, N, Johansson, K, Andersson, K 1995. Osteochondrosis and leg weakness in pigs selected for lean tissue growth rate. Livestock Production Science 44, 4552.
Van Soest, PJ, Robertson, JB, Lewis, BA 1991. Methods of dietary fibre, neutral detergent fibre, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Veum, TL, Lui, J, Bollinger, DW, Ledoux, DR 1996. Replacing 0.1% of the inorganic phosphorus (iP) with microbial phytase in corn-soya bean diets and the effect on P digestibility by growing–finishing pigs. Journal of Animal Science 74 (suppl. 1), 185 (abstract).


Related content

Powered by UNSILO

Effects of phytase and 25-hydroxyvitamin D3 inclusions on the performance, mineral balance and bone parameters of grower–finisher pigs fed low-phosphorus diets

  • J. V. O’Doherty (a1), D. A. Gahan (a1), C. O’Shea (a1), J. J. Callan (a1) and K. M. Pierce (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.