Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-26T23:32:16.840Z Has data issue: false hasContentIssue false

Validation of use of purine bases as a microbial marker by 15N labelling in growing lambs given high-concentrate diets: effects of grain processing, animal age and digesta sampling site

Published online by Cambridge University Press:  09 March 2007

A. R. Askar
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
J. A. Guada*
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
J. Balcells
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
A. de Vega
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
C. Castrillo
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
*
E-mail: jguada@unizar.es
Get access

Abstract

The origin of post-ruminal purine bases (PB) was studied in 24 growing lambs that were given a pelleted concentrate plus barley straw (C) or whole barley grain plus protein supplement (WB). Six lambs from each treatment were slaughtered at 10 and 30 days post weaning after 15N labelling of microbial nitrogen (N) and PB. Microbial contribution to digesta non-ammonia N (NAN) and PB was lower (P < 0·01) when estimated from duodenal rather than abomasal samples (0·36 v. 0·52 (s.e.d. 0·021) for NAN and 0·47 v. 0·77 (s.e.d. 0·029) for PB) as a result of endogenous contamination. In comparison with 15N, total PB/N led to higher estimates (P < 0·01) of microbial contribution to abomasal NAN in WB treatment (0·62 v. 0·46 s.e.d. 0·049). The difference was removed after correcting for microbial PB, while this effect was not observed with < the C diet, resulting in a marker by diet interaction (P < 0·05). Abomasal PB flow increased (P < 0·1) from 10 to 30 days after weaning mainly due to the higher proportion of microbial PB (0·70 v. 0·81 (s.e.d. 0·047)). Rumen apparent PB degradation did not differ between diets in older lambs, but it was proportionally 0·39 lower for WB treatment (P < 0·05) in younger lambs. When the microbial PB flow was estimated indirectly from labelled microbial N and the PB/N ratio of bacterial extracts the estimates were in agreement with those derived from PB-15N in the WB treatment but resulted in unrealistic values in lambs on diet C. Results suggest that significant proportions of dietary PB can escape rumen degradation which may lead to overestimation of microbial contribution to abomasal NAN when the PB/N ratio is used as marker. The extent of the overestimation is affected by the lamb age and grain processing.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

†Animal and Poultry Nutrition Department, Desert Research Center, El-Matareya, Cairo, Egypt.

References

Aharoni, Y. and Tagari, H. 1991. Use of nitrogen-15 determinations of purine fractions of digesta to define nitrogen metabolism traits in the rumen. Journal of Dairy Science 74: 25402547.CrossRefGoogle ScholarPubMed
Al-Khalidi, U. A. S. and Chaglassian, T. H. 1965. The species distribution of xanthine oxidase. Biochemical Journal 97: 318320.CrossRefGoogle ScholarPubMed
Association of Official Analytical Chemists. 1984. Official methods of analysis, 13th edition. AOAC, Washington, DC.Google Scholar
Badawy, A. M., Campbell, R. M., Cuthbertson, D. P., Fell, B. F. and Mackie, W. S. 1958. Further studies on the changing composition of the digesta along the alimentary tract of the sheep. 1. Total and non-protein nitrogen. British Journal of Nutrition 12: 367383.CrossRefGoogle ScholarPubMed
Balcells, J., Guada, J. A., Peiro, J. M. and Parker, D. S. 1992. Simultaneous determination of allantoin and oxypurines in biological fluids by high performance liquid chromatography. Journal of Chromatography 575: 153157.CrossRefGoogle ScholarPubMed
Beauchemin, K. A., Yang, W. Z. and Rode, L. M. 2001. Effect of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. Journal of Animal Science 79: 19251936.CrossRefGoogle ScholarPubMed
Broderick, G. A. and Merchen, N. R. 1992. Markers for quantifying microbial protein synthesis in the rumen. Journal of Dairy Science 75: 26182632.CrossRefGoogle ScholarPubMed
Calsamiglia, S., Stern, M. D. and Firkins, J. L. 1997. Comparison of nitrogen-15 and purines as microbial markers in continuous culture. Journal of Animal Science 74: 13751381.CrossRefGoogle Scholar
Carro, M. D. and Miller, E. L. 2002. Comparison of microbial markers (15N and purine bases) and bacterial isolates for the estimation of rumen microbial protein synthesis. Animal Science 75: 315321.CrossRefGoogle Scholar
Cecava, M. J., Merchen, N. R., Berger, L. L., Mackie, R. I. and Fahey, G. C. Jr, 1991. Effects of dietary energy level and protein source on nutrient digestion and ruminal nitrogen metabolism in steers. Journal of Animal Science 69: 22302243.CrossRefGoogle ScholarPubMed
Condon, R. J., Hall, G. and Hatfield, E. E. 1970. Metabolism of abomasally infused 14C labelled ribonucleic acid, adenine, uracil and glycine. Journal of Animal Science 31: 10371038.Google Scholar
Craig, M. W., Brown, D. R., Broderick, A. and Ricker, D. B. 1987. Post-prandial composition changes of fluid and particle-associated ruminal microorganism. Journal of Animal Science 65: 10241048.CrossRefGoogle Scholar
De Lange, C. F. M., Souffrant, W. B. and Sauer, W. C. 1990. Real ileal protein and amino acid digestiblities in feedstuffs for growing pig as determined with the 15N isotope dilution technique. Journal of Animal Science 68: 409418.CrossRefGoogle ScholarPubMed
Dewhurst, R. J., Hepper, D. and Webster, A. J. F. 1995. Comparison of in sacco and in vitro techniques for estimating the rate and extent of rumen fermentation of a range of dietary ingredients. Animal Feed Science and Technology 51: 211229.CrossRefGoogle Scholar
Djouvinov, D. S., Nakashima, Y., Todorov, N. and Pavlov, D. 1998. In situ degradation of feed purines. Animal Feed Science and Technology 71: 6777.CrossRefGoogle Scholar
Faichney, G. J. 1975. The use of markers to partition digestion within the gastrointestinal tract of ruminants. In Digestion and metabolism in the ruminant (ed. McDonald, I. W. and Warner, A. C. I.), pp. 277291. University of New England Publishing Unit, Armidale, NSW, Australia.Google Scholar
Firkins, J. L., Lewis, S. M., Montgomery, L., Berger, L. L., Merchen, N. R. and Fahey, G. C. Jr 1987. Effects of feed intake and dietary urea concentration on ruminal dilution rate and efficiency of bacterial growth in steers. Journal of Dairy Science 70: 23122321.CrossRefGoogle ScholarPubMed
Galyean, M. L., Wagner, D. G. and Owens, F. N. 1979. Corn particle size and site and extent of digestion by steers. Journal of Animal Science 49: 204210.CrossRefGoogle Scholar
Galyean, M. L., Wagner, D. G. and Owens, F. N. 1981. Dry matter and starch disappearance of corn and sorghum as influenced by particle size and processing. Journal of Dairy Science 64: 18041812.CrossRefGoogle Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis. Agricultural handbook no. 379. Agricultural Research Service, US Department of Agriculture.Google Scholar
John, A. and Ulyatt, M. J. 1984. Measurement of protozoa using phosphatidyl choline and of bacteria using nucleic acids in the duodenal digesta of sheep fed chaffed lucerne hay (Medicago sativa L.) diets. Journal of Agricultural Science, Cambridge 102: 3344.CrossRefGoogle Scholar
Hvelplund, T. and Weisbjerg, M. R. 2000. In situ techniques for the estimation of protein degradability and postrumen availability. In Forage evaluation in ruminant nutrition (ed. Givens, D. I., Owens, E., Axford, R. F. E. and Omed, H. M.), pp. 233258. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
McAllan, A. B. and Smith, R. H. 1973. Degradation of nucleic acids in the rumen. British Journal of Nutrition 29: 331345.CrossRefGoogle ScholarPubMed
Madsen, J. and Hvelplund, T. 1985. Protein degradation in the rumen. A comparison between in vivo, nylon bags, in vitro and buffer measurements. Acta Agriculturæ Scandinavica. 25: (suppl.) 103124.Google Scholar
Martín-Orúe, S. M., Balcells, J., Guada, J. A. and Castrillo, C. 1995. Endogenous purine and pyrimide derivative excretion in pregnant sows. British Journal of Nutrition 73: 375385.CrossRefGoogle Scholar
Martín-Orúe, S. M., Balcells, J., Zakraoui, F. and Castrillo, C. 1998. Quantification and chemical composition of mixed bacteria harvested from solid fractions of rumen digesta: effect of detachment procedure. Animal Feed Science and Technology 71: 269282.CrossRefGoogle Scholar
Mayes, R. W., Lamb, C. S. and Colgrove, P. M. 1986. The use of dosed and herbage n-alkanes as markers for the determination of herbage intake. Journal of Agricultural Science, Cambridge 107: 161170.CrossRefGoogle Scholar
Mayes, R. W., Lamb, C. S. and Colgrove, P. M. 1988. Digestion and metabolism of dosed even-chain n-alkanes in sheep. Proceedings of the 12th general meeting of the European Grassland Federation, pp. 159163.Google Scholar
Millward, D. J., Forrester, T., Ah-Sing, E., Yeboah, N., Gibson, N., Badaloo, A., Boyne, M., Reade, M., Persaud, C. and Jackson, A. 2000. The transfer of 15N from urea to lysine in the human infant. British Journal of Nutrition 83: 505512.CrossRefGoogle ScholarPubMed
Nocek, J. E. and Tamminga, S. 1991. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. Journal of Dairy Science 74: 35983629.CrossRefGoogle ScholarPubMed
Offner, A., Bach, A. and Sauvant, D. 2003. Quantitative review of in situ degradation in the rumen. Animal Feed Science and Technology 106: 8193.CrossRefGoogle Scholar
Ohajuruka, O. A. and Palmquist, D. L. 1991. Evaluation of n-alkanes as digesta markers in dairy cows. Journal of Animal Science 69: 17261732.CrossRefGoogle ScholarPubMed
Oliván, M. and Osoro, K. 1999. Effect of the temperature on alkane extraction from faeces and herbage. Journal of Agricultural Science, Cambridge 132: 305312.CrossRefGoogle Scholar
Ø'rskov, E. R., MacLeod, N. A. and Kyle, D. J. 1986. Flow of nitrogen from the rumen and abomasum in cattle and sheep given protein-free nutrients by intragastric infusion. British Journal of Nutrition 56: 241248.Google Scholar
Owens, F. N. and Goetsch, A. L. 1986. Digesta passage and microbial protein synthesis. In Control of digestion and metabolism in ruminants (ed. Milligan, L. P., Grovum, W. L. and Dobson, A.), pp. 196223. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Pérez, J. F., Balcells, J., Guada, J. A. and Castrillo, C. 1997. Contribution of dietary nitrogen and purine bases to the duodenal digesta: comparison of duodenal and polyester-bag measurements. Animal Science 65: 237245.CrossRefGoogle Scholar
Pérez, J. F., Rodríguez, C., Gonzalez, J., Balcells, J. and Guada, J. A. 1996. Contribution of dietary purine bases to duodenal digesta in sheep. In situ studies of purine degradability corrected for microbial contamination. Animal Feed Science and Technology 62: 251262.CrossRefGoogle Scholar
Poncet, C., Ivan, M. and Leveille, M. 1982. Electromagnetic measurements of duodenal digesta flow in cannulated sheep. Reproduction, Nutrition, Développement 22: 651660.CrossRefGoogle ScholarPubMed
Ranilla, M. J. and Carro, M. D. 2003. Diet and procedures used to detach particle-associated microbes from ruminal digesta influence chemical composition of microbes and estimation of microbial growth in Rusitec fermenters. Journal of Animal Science 8: 537544.CrossRefGoogle Scholar
Razzaque, M. A., Topps, J. H., Kay, R. N. B. and Brockway, J. M. 1981. Metabolism of nucleic acids of rumen bacteria by preruminant and ruminant lambs. British Journal of Nutrition 45: 517527.CrossRefGoogle ScholarPubMed
Rodríguez, C. A., González, J., Alvir, M. R., Reppeto, J. L., Centeno, C. and Lamrani, F. 2000. Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. British Journal of Nutrition 84: 369376.CrossRefGoogle ScholarPubMed
Rodríguez, C. A., González, J., Alvir, M. R., Redondo, R. and Cajarville, C. 2003. Effects of feed intake on composition of sheep rumen contents and their microbial population size. British Journal of Nutrition 89: 97103.CrossRefGoogle ScholarPubMed
Smith, R. H., McAllan, A. B., Hewitt, D. and Lewis, P. E. 1978. Estimation of amounts of microbial and dietary nitrogen compounds entering the duodenum of cattle. Journal of Agricultural Science, Cambridge 90: 557568.CrossRefGoogle Scholar
Statistical Analysis Systems Institute. 2000. Statistical analysis systems, release 8. 01. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Valiente, O. L., Delgado, P., Vega, A. de and Guada, J. A. 2003. Validation of the n-alkane technique to estimate intake, digestibility, and diet composition in sheep consuming mixed grain: roughage diets. Australian Journal of Agricultural Research 54: 693702.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed
Vicente, F., Guada, J. A., Surra, J., Balcells, J. and Castrillo, C. 2004. Microbial contribution to duodenal purine flow in fattening cattle given concentrate diets, estimated by purine N labelling (15N) of different microbial fractions. Animal Science 78: 159167.CrossRefGoogle Scholar
Wenham, G. and Wyburn, R. S. 1980. A radiological investigation of the effects of cannulation on intestinal motility and digesta cow in sheep. Journal of Agricultural Science, Cambridge 95: 539546.CrossRefGoogle Scholar
Yang, W. Z., Beauchemin, K. A. and Rody, L. M. 2001. Effect of dietary factors on distribution and chemical composition of liquid- or solid-associated bacterial populations in the rumen of dairy cow. Journal of Animal Science 79: 27362746.CrossRefGoogle ScholarPubMed
Zinn, R. A. and Owens, F. N. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66: 157166.CrossRefGoogle Scholar