Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T11:21:40.162Z Has data issue: false hasContentIssue false

Functional and metabolic changes in rabbits undergoing continuous heat stress for 24 days

Published online by Cambridge University Press:  02 September 2010

A. Amici
Affiliation:
Istituto di Zootecnia, Università della Tuscia, Via De Lellis 01100, Viterbo, Italy
A. Finzi
Affiliation:
Istituto di Zootecnia, Università della Tuscia, Via De Lellis 01100, Viterbo, Italy
P. Mastroiacono
Affiliation:
Istituto di Fisiologia Generale, Università La Sapienza, Roma, Italy
M. Nardini
Affiliation:
Istituto Nazionale della Nutrizione, Roma, Italy
G. Tomassi
Affiliation:
Laboratorio di Immunologia e Nutrizione, Università della Tuscia, Viterbo, Italy
Get access

Abstract

Intensively reared rabbits are particularly sensitive to heat stress. For this reason it is useful to identify reliable stress indicators to evaluate peculiar stress conditions of the breeding environment.

In order to recognize which changes in biochemical and functional measurements can be utilized as stress indicators, three groups of eight New Zealand White rabbits, of 2·8 kg body weight and 11 weeks of age, were kept in individual cages and submitted to different environmental conditions.

Group 1 was located in a climatic chamber at 33·5 (s.e. 0·5)°C and relative humidity 0·62 (s.d. 0·05) and groups 2 and 3 (control) at 18·0 (s.d. 0·5)°C. Group 1 was given ad libitum a commercially pelleted diet, group 2 was pairfed with group 1, and group 3 was given food ad libitum. For all the groups, at days 0, 1, 6, 12 and 24, the following measurements were made: body weight, rectal temperature, food consumption and plasma glucose, cholesterol, urea, triglycerides, uric acid, and glutamate oxalacetate transaminase, glutamate pyruvate transaminase, thiobarbituric acid-reactive substances, vitamin A and vitamin E, SH-groups and total (peroxil) radical-trapping antioxidant parameter (TRAP).

Food consumption of animals exposed to 33·5 °C was strongly reduced in the 1st day (13·6 v. 161·6 glday); a gradual increase until the end of the trial was then observed (98·8 v. 177·3 gl day). Rectal temperature rapidly increased and remained stable and higher than in the control groups all through the trial (P < 0·01). The major changes in the measurements of the heat stressed animals were a significant increase of the plasma level of vitamin E at days 6, 12, 24 (P < 0·05), and a significant reduction of the plasma concentration of SH-groups and TRAP (P < 0·05).

The results suggest an impairment or overload of antioxidant systems after thermal stress, indicating a reduced resistance to biological and environmental stress factors. The results also indicate that some parameters of antioxidant systems can be used to select a significant stress indicator.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bieri, J. G., Tolliver, G. T. and Catignani, L. G. 1979. Simultaneous determination of alpha tocopherol and retinol in plasma or red cells by high pressure liquid chromatography. American Journal of Clinical Nutrition 32: 21432149.Google Scholar
Bonsembiante, M., Chiericato, G. M. and Bailoni, L. 1989. Risultati sperimentali sull impiego del bicarbonato di sodio in diete per conigli da came allevati in condizioni di stress termico. Rivista di Coniglicoltura 9: 6370.Google Scholar
Castello, J. A. 1984. Control ambiental en la crianza intensiva del conejo. Cunicultura 47: 1322.Google Scholar
Castello, J. A. and Roca, T. 1980. Factores de confort de los conejos. In Tratado de cunicultura (ed. Real Escuela Oficial y Superior de Avicultura), vol. 2, pp. 431438.Google Scholar
Cheeke, P. R., Patton, N. M. and Templeton, G. S. 1982. Rabbit production. Interstate, Danville, Illinois.Google Scholar
Chiericato, G. M., Bailoni, L. and Rizzi, C. 1992. The effect of the environmental temperature on the performance of growing rabbit. Proceedings of the fifth congress of World Rabbit Science Association, B: pp. 723731.Google Scholar
Costantini, F. and Panella, F. 1983. Performance produttive del coniglio in rapporto alia stagione di allevamento. Rivista di Coniglicoltura 20: (10), 3539.Google Scholar
Donati, Y. R. A., Slosman, D. O. and Polla, B. S. 1990. Oxidative injury and heat shock response. Biochemical Pharmacology 40: 25712577.Google Scholar
Eberhart, S. 1980. The influence of environmental temperatures on meat rabbits of different breeds. Proceedings of the second congress of World Rabbit Science Association vol. 1, pp. 399409.Google Scholar
Ellman, G. L. 1959. Tissue sulphydril groups. Archives Biochemistry Biophysics 82: 7077.CrossRefGoogle Scholar
Finzi, A., Kuzminsky, G., Morera, P. and Amici, A. 1986. Alcuni aspetti della termotolleranza nel coniglio. Rivista di Coniglicoltura 12: 5155.Google Scholar
Finzi, A., Valentini, A. and Filippi Balestra, G. 1994. Approche de quelques indicateurs du stress chez le lapin. Cuniculture 118: 189193.Google Scholar
Grazzani, R. and Dubini, F. 1982. Coniglicoltura razionale. Ottaviano, Milano.Google Scholar
Matheron, G. and Martial, S. P. 1981. L'elevage de lapin en ambiance chaude et humide: etude de quelque responses zootecniques et physiologiques. Thesis, Ecole Natiqnal Superieure de Agriculture, Rennes.Google Scholar
Paci, G., Bagliacca, M., Marzoni, M. and Liponi, G. B. 1993. Consumo giornaliero e CUDa di conigli sottoposti a differenti temperature. Annali della Facoltd di Medicina Veterinaria di Pisa, vol. XLVI, pp. 377385.Google Scholar
Prud'hon, M. 1976. Comportament alimentaire du lapin soumis aux temperatures de 10, 20 et 30°C. Proceedings of the first congress of World Rabbit Science Association, vol. 14, pp. 16.Google Scholar
Schlesinger, M. J., Ashburner, M. and Tissieres, A. 1982. Heat shock: from bacteria to man. Cold Spring Harbor, Cold Spring Laboratory 1440.Google Scholar
Simplicio, J. B., Cervera, C. and Bias, E. 1988. Effect of two different diets and temperatures on the growth of meat rabbit. Proceedings of the fourth congress of World Rabbit Science Association vol. 3, pp. 7477.Google Scholar
Statistical Analysis Systems Institute. 1993. SAS user's guide: statistics. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Teeter, R. G., Smith, M. O., Owens, F. N. and Arp, S. C. 1985. Chronic heat stress and respiratory alkalosis occurrence and treatment in broiler chickens. Poultry Science 64: 10601064.Google Scholar
Verde, M. T. and Piquer, J. G. 1986. Effect of stress on the corticosterone and ascorbic acid (vit. C) content of the blood plasma of rabbits. Journal of Applied Rabbit Research 4: 181185.Google Scholar
Wayner, D. D. M., Burton, G. W., Ingold, K. U., Barclay, L. R. C. and Locke, S. J. 1987. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochimica et Biophysica Ada 934: 408419.Google Scholar
Wayner, D. D. M., Burton, G. W., Ingold, K. U. and Locke, S. 1985. Quantitative measurements of the total peroxyl radical-trapping antioxidant capability of human blood by controlled peroxidation. FEBS Letters 187: 3337.Google Scholar
Yagi, K. 1982. Assay for serum Iipid peroxide level and its clinical significance. In Lipid peroxide in biology and medicine(ed. Hagi, K.), pp. 324340. Academic Press, New YorkGoogle Scholar