Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T05:09:17.508Z Has data issue: false hasContentIssue false

Feeding value of three categories of pea (Pisum sativum, L.) for poultry

Published online by Cambridge University Press:  18 August 2016

F. Grosjean
Affiliation:
Institut Technique des Céréales et Fourrages, 8 avenue du Président Wilson, 75116 Paris, France
B. Barrier-Guillot
Affiliation:
Institut Technique des Céréales et Fourrages, 8 avenue du Président Wilson, 75116 Paris, France
D. Bastianelli
Affiliation:
Union Nationale Interprofessionnelle des Plantes riches en Protéines, 12 avenue George V, 75008 Paris, France
F. Rudeaux
Affiliation:
SANDERS, BP 32, 17 quai de l’Industrie, 91201 Athis Mons cedex, France
A. Bourdillon
Affiliation:
SANDERS, BP 32, 17 quai de l’Industrie, 91201 Athis Mons cedex, France
C. Peyronnet
Affiliation:
Union Nationale Interprofessionnelle des Plantes riches en Protéines, 12 avenue George V, 75008 Paris, France
Get access

Abstract

The nutritional value of different categories of peas was measured in mash or pelleted diets using adult cockerels. Twenty-five round and white-flowered peas (feed peas), 12 round and coloured-flowered peas and five wrinkled and white-flowered peas were used in mash diets. From the same batches, 11 feed peas, five coloured peas and four wrinkled peas were tested in pelleted diets.

Mean apparent metabolizable energy (AME) values were 12·02, 11·35 and 10·50 MJ/kg dry matter (DM) for feed peas, coloured peas and wrinkled peas respectively in mash diets and 13·18, 12·72 and 11·63 MJ/kg DM for the same categories in pelleted diets.

Mean starch digestibility was 0·905, 0·887 and 0·802 for feed peas, coloured peas and wrinkled peas respectively in mash diets and 0·985, 0·984 and 0·840 for these categories in pelleted diets.

Mean protein digestibility was 0·788, 0·643 and 0·798 for feed peas, coloured peas and wrinkled peas respectively in mash diets and corresponding values for peas in pelleted diets were 0·855, 0·743 and 0·853.

Pelleting thus had a positive effect on the nutritional value of peas and this improvement was all the more important because the AME and protein digestibility of the pea in mash diets was low.

The nutritional value of feed peas for cockerels was not strongly correlated with chemical composition or to digestibility data obtained in the pig.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieux, C., Pacheto, E. D., Bouchet, B., Gallant, B. and Szylit, O. 1992. Contribution of the digestive tract microflora to amylomaize starch degradation in the rat. British Journal of Nutrition 67: 489499.CrossRefGoogle ScholarPubMed
Barrier-Guillot, B., Métayer, J. P., Grosjean, F. and Peyronnet, C. 1995. Feeding value of pea presented in mash or pellets in adult cockerels, laying hens, broilers and turkey poults. 10th European symposium on poultry nutrition, Antalya, Turkey, pp. 286287.Google Scholar
Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M. and Régnier, J. M. 1998. Feeding value of pea (Pisum sativum L.). 1. Chemical composition of different categories of pea. Animal Science 67: 609619.Google Scholar
Brenes, A., Rotter, B. A., Marquardt, R. R. and Guenter, W. 1993. The nutritional value of raw, autoclaved and dehulled peas (Pisum sativum L.) in chicken diets as affected by enzyme supplementation. Canadian Journal of Animal Science 73: 605614.Google Scholar
Carré, B., Beaufils, E. and Melcion, J. P. 1991. Evaluation of protein and starch digestibility and energy value of pelleted or unpelleted pea seeds from winter or spring cultivars in adult and young chickens. Journal of Agricultural and Food Chemistry 39: 468472.CrossRefGoogle Scholar
Carré, B. and Conan, L. 1989. Relationship between trypsin inhibitor content of pea seeds and pea protein digestibility in poultry. In Recent advances of research in antinutritional factors in legume seeds (ed. Huisman, J., Poel, A. F. B. van der and Liener, I. E.), pp. 103106. Pudoc, Wageningen.Google Scholar
Carré, B., Escartin, R., Melcion, J. P., Champ, M., Roux, G. and Leclercq, B. 1987. Effects of pelleting and associations with maize or wheat on the nutritive value of smooth pea (Pisum sativum) seeds in adult cockerels. British Poultry Science 28: 219229.CrossRefGoogle ScholarPubMed
Carré, B., Melcion, J. P., Widiez, J. L. and Biot, P. 1998. Effect of various processes of fractionation, grinding and storage of peas on the digestibility of pea starch in chickens. Animal Feed Science and Technology 71: 1933.Google Scholar
Conan, L., Barrier-Guillot, B., Widiez, J. L. and Lucbert, J. 1992. Effect of grinding and pelleting on the nutritional value of smooth pea seed in adult cockerels. Première conférence Européenne sur les protéagineux, Angers, France, pp. 479480.Google Scholar
Granfeldt, Y. E., Drews, A. W. and Bjorck, I. M. E. 1993. Starch bioavailability in arepas made from ordinary or high amylose corn: concentration and gastrointestinal fate of resistant starch in rats. Journal of Nutrition 123: 16761684.Google Scholar
Grosjean, F. 1985. Combining pea in animal feed. in The pea crop (ed. Hebblethwaite, P. D., Heath, M. C. and Dawkins, T. C. K.), pp. 453462. Butterworths, London.CrossRefGoogle Scholar
Grosjean, F., Barrier-Guillot, B., Jondreville, C. and Peyronnet, C. 1995. Feeding value of different cultivars of faba beans. Proceedings of the second European conference on grain legumes, Copenhagen, Denmark, pp. 308309.Google Scholar
Grosjean, F., Bastianelli, D., Bourdillon, A., Cerneau, P., Jondreville, C. and Peyronnet, C. 1998a. Feeding value of pea (Pisum sativum, L.). 2. Nutritional value in the pig. Animal Science 67: 621625.Google Scholar
Grosjean, F., Williate-Hazouard, I., Barrier-Guillot, B., Skiba, F., Métayer, J. P., Peyronnet, C. and Gâtel, F. 1998b. Variability of energy value of pea for pigs and broiler chickens: attempts to identify effects of environmental conditions and agricultural practices. Proceedings of the third European conference on grain legumes, Valladolid, Spain, pp. 304305.Google Scholar
Igbasan, F. A. and Guenter, W. 1996a. The evaluation and enhancement of the nutritive value of yellow-, green- and brown-seeded pea cultivars for unpelleted diets given to broiler chickens. Animal Feed Science and Technology 63: 924.Google Scholar
Igbasan, F. A. and Guenter, W. 1996b. The enhancement of the nutritive value of peas for broiler chickens: an evaluation of micronization and dehulling processes. Poultry Science 75: 12431252.CrossRefGoogle ScholarPubMed
Jansman, A., Huisman, J. and Poel, A. F. B. van der. 1993. Performance of broiler chicks fed diets containing different varieties of faba bean (Vicia faba L.). Archiv für Geflügelkunde 57: 220227.Google Scholar
Jeroch, H., Hauschild, A., Kölher, R. and Halle, I. 1996. Inhaltsstoffe von Erbsengenotypen (Pisum sativum L.) und ihr Einfluss auf den Futterwert für das Geflügel. Wirtschaftseigene Futter 42: 2239.Google Scholar
Lacassagne, L. 1988. Alimentation des volailles: substituts au tourteau de soja. INRA Productions Animales 1: 4757.Google Scholar
Lacassagne, L., Francesh, M., Carré, B. and Melcion, J. P. 1988. Utilisation of tannin-containing and tannin-free faba beans (Vicia faba) by young chickens. Effects of pelleting feeds on energy, protein and starch digestibility. Animal Feed Science and Technology 20: 5968.Google Scholar
Lessire, M. 1990. Effect of feeding technique, ad libitum, dry or wet form feeding, on the metabolisable energy value of raw materials for poultry. British Poultry Science 31: 785793.Google Scholar
Lindgren, E. 1975. The nutritive value of peas and field beans for hens Swedish Journal of Agricultural Research 5: 159161.Google Scholar
Longstaff, M. and McNab, J. M. 1987. Digestion of starch and fibre carbohydrates in peas by adult cockerels. British Poultry Science 28: 261285.Google Scholar
Longstaff, M. and McNab, J. M. 1991. The inhibitory effects of hull polysaccharides and tannins of field beans (Vicia faba L.) on the digestion of amino acids, starch and lipid and on digestive enzyme activities in young chicks. British Journal of Nutrition 65: 199216.Google Scholar
Melcion, J. P. and van der Poel, A. F. B.. 1993. Process technology and antinutritional factors: principles, adequacy and process optimisation. In Recent advances of research in antinutritional factors in legume seeds (ed. van der Poel, A. F. B. Huisman, J. and Saini, H. S.). EEAP publication no. 70, pp. 419-431 Wageningen Pers.Google Scholar
Sibbald, I. R., Elliot, J. I. and Cote, M. 1983. Comparison of bioavailable energy values of diets measured with poultry and swine. Animal Feed Science and Technology 8: 191196.Google Scholar
Smith, W. C., Moughan, P. J. and Pearson, G. 1988. A comparison of bioavailable energy values of ground cereal grains measured with adult cockerels and growing pigs. Animal Feed Science and Technology 19: 105110.Google Scholar
Statistical Analysis Systems Institute. 1988. User’s guide. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Terpstra, K. and Hart, N. de. 1974. The estimation of urinary nitrogen and faecal nitrogen in poultry excreta. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 32: 306320.Google Scholar
Vogt, H. 1983. Nutritional value of peas in chickens. Proceedings of the fourth European symposium on poultry nutrition, WPSA, pp. 132140.Google Scholar
Wareham, C. N., Wiseman, J. and Cole, D. J. A. 1993. Influence of faba bean tannins on male broiler chicks: evaluation of hulls from white- and coloured-flowered cultivars and of near-isogenic lines. Journal of Agricultural Science, Cambridge 121: 427436.CrossRefGoogle Scholar
Yuste, P., Brenes, A. and Viveros, A. 1995. Energia metabolizable verdadera y digestibilidades de los aminoácidos y del amidon de dos variedades de guisantes (P. sativum, var. Frisson y local) con distinta concentration en taninos en pollos adultos. Investigación Agraria, Producción y Sanidad Animales 10: 201209.Google Scholar