Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T19:37:26.192Z Has data issue: false hasContentIssue false

Effects of urea and saccharose on intake and digestion of a Digitaria decumbens hay by black belly sheep

Published online by Cambridge University Press:  18 August 2016

H. Archimède
Affiliation:
Unité de Recherches Zootechniques, Prise d’Eau, Petit-Bourg, 97170, Guadeloupe, French West Indies
G. Aumont
Affiliation:
Unité de Recherches Zootechniques, Prise d’Eau, Petit-Bourg, 97170, Guadeloupe, French West Indies
G. Saminadin|
Affiliation:
Unité de Recherches Zootechniques, Prise d’Eau, Petit-Bourg, 97170, Guadeloupe, French West Indies
E. Deprès
Affiliation:
Unité de Recherches Zootechniques, Prise d’Eau, Petit-Bourg, 97170, Guadeloupe, French West Indies
P. Despois
Affiliation:
Unité de Recherches Zootechniques, Prise d’Eau, Petit-Bourg, 97170, Guadeloupe, French West Indies
A Xandé
Affiliation:
Unité de Recherches Zootechniques, Prise d’Eau, Petit-Bourg, 97170, Guadeloupe, French West Indies
Get access

Abstract

Effects of incorporation of urea and saccharose in diets, on intake and digestion by sheep of a 35-day-old pangola (Digitaria decumbens) hay, have been studied according to a 4 × 4 Latin-square design. Sixteen rams were given four diets: hay (C); hay plus urea (U, 23 g/kg hay); hay plus saccharose (S, 60 g/kg hay), hay plus urea and saccharose (SU). Acid-detergent fibre and crude protein (CP) content of the roughage were 395 and 78 g/kg dry matter (DM) respectively. Intake of hay (g DM per kg live weight0.75), supplemented with urea and sugar (42⋅9), was lower (F < 0.05) than with other diets (47.2, s.e. 1.6). The organic matter (OM) total tract and ruminal digestibility of the diet C, S, U and SU were 0.622, 0.590, 0.615 and 0.587 (s.e. 0.007); 0.361, 0.380, 0.378 and 0.345 (s.e. 0.015) respectively. Effective degradation and nylon bag kinetics of DM degradation were higher with U and SU compared with S or C. Few differences were observed between diets for ruminal concentration of volatile fatty acids. The ruminal ammonia concentrations were higher (P < 0.05) for the diets with urea than without urea (78 v. 215 mg/l). The efficiencies of the microbial synthesis (g nitrogen per kg OM fermented in the rumen) were, 23.6, 22.4, 24.9 and 29.3 (s.e. 1.7) for the diets C, U, S and SU respectively.

Even though additional urea increased nitrogen availability for ruminal bacteria, urea supplementation did not affect significantly intake or digestion of the pangola hay of medium CP content used in this experiment.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aumont, G., Caudron, I., Saminadin, G. and Xandé, A. 1995. Sources of variation in nutritive values of tropical forages from Caribbean. Animal Feed Science and Technology 51: 113.Google Scholar
Demarquilly, C., Chenost, M. and Giger, S. 1995. Pertes fécales et digestibilité des aliments et des rations. In Nutrition des ruminants domestiques (ed. Jarrige, R., Ruckebush, Y., Demarquilly, C., Farce, M.H. and Journet, M.), pp. 383406. INRA publications, Paris.Google Scholar
Egan, A.R. 1980. Host animal-rumen relationships. Proceedings of the Nutrition Society 39: 7987.Google Scholar
Egan, J.K. and Doyle, P.T. 1985. Effect of intraruminal infusion of urea on the response in voluntary food intake by sheep. Australian Journal of Agricultural Research 36: 483495.Google Scholar
Faichney, G.J. 1980. The use of markers to measure digesta flow from stomach of sheep fed once daily. Journal of Agricultural Science, Cambridge 94: 313318.Google Scholar
Fick, K.R., Ammerman, C.B., McCowan, C.H., Loggins, P.E. and Cornell, J.A. 1973. Influence of supplemental energy and biuret nitrogen on the utilization of low quality roughage by sheep. Journal of Animal Science 36: 133143.Google Scholar
Hennessy, D.W. and Willamson, P.T. 1990. Feed intake and live weight of cattle on subtropical native pasture hays. I. The effect of urea. Australian Journal of Agricultural Research 41: 11691177.Google Scholar
Hunter, R.A. and Siebert, B.D. 1985a. Utilization of low-quality roughage by Bos taurus and Bos indicus cattle. 1. Rumen digestion. British Journal of Nutrition 53: 637648.Google Scholar
Hunter, R.A. and Siebert, B.D. 1985b. Utilization of low-quality roughage by Bos taurus and Bos indicus cattle. 2. The effect of rumen degradable nitrogen and sulfur on voluntary food intake and rumen characteristics. British Journal of Nutrition 53: 649656.Google Scholar
Hunter, R.A. and Siebert, B.D. 1987. The effect of supplements of rumen-degradable protein and formaldehyde-treated casein on the intake of low-nitrogen roughage by Bos taurus and Bos indicus steers at different stages of maturity. Australian Journal of Agricultural Research 38: 209218.Google Scholar
Leng, R.A. 1990. Factors affecting the utilization of ‘poor-quality’ forages by ruminants particularly under tropical conditions. Nutrition Research Reviews 3: 277309.CrossRefGoogle ScholarPubMed
Liebholz, J. and Kellaway, R.C. 1982. Effect of energy supplements on the intake and utilisation of low quality roughages. Proceedings of the Australian Society of Animal Production 14: 6567.Google Scholar
McMeniman, N.P. and Armstrong, D.G. 1977. Nitrogen level in low-roughage diet for efficient rumen microbial protein production. Animal Feed Science and Technology 51: 255266.Google Scholar
Meissner, H.H., Pienaar, J.P., Liebenberg, L.H.P. and Roux, C.Z. 1979. Rumen flow dynamics and voluntary intake in ruminants. Annales de Recherches Vétérinaires 10: 219222.Google Scholar
Milford, R. and Minson, D.J. 1965. Intake of tropical pasture species. Proceedings of the IX international grassland congress, p. 815822.Google Scholar
Minson, D.J. 1990. Forage in ruminant nutrition. Academic Press, inc., San Diego, California 92101.Google Scholar
Ørskov, E.R. and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92: 499503.Google Scholar
Poppi, D.P., Minson, D.J. and Ternouth, J.H. 1981. Studies of cattle and sheep eating leaf and stem fractions of grasses. I. Voluntary intake, digestibility and retention time in the reticulo-rumen. Australian Journal of Agricultural Research 32: 99108.Google Scholar
Preston, T.R. 1995. Tropical animal feeding. A manual for research workers. FAO animal production and health paper no. 126.Google Scholar
Sauvant, D., Grenet, E. and Doreau, M. 1995. Dégradation chimique des aliments dans le réticulo-rumen: cinétique et importance. In Nutrition des ruminants domestiques (ed. Jarrige, R., Ruckebush, Y., Demarquilly, C., Farce, M.H. and Journet, M.), pp. 383406. INRA publications, Paris.Google Scholar
Statistical Analysis Systems Institute. 1987. SAS/STAT guide for personal computer. SAS Institute, Inc., Cary, NC.Google Scholar
Stern, M.D. and Hoover, W.H. 1979. Methods for determining and factors affecting rumen microbial protein synthesis: a review. Journal of Animal Science 49: 15901603.Google Scholar
Stern, M.D., Hoover, W.H., Sniffen, C.J., Crooker, B.A. and Knowlton, P.H. 1978. Effects of nonstructural carbohydrate, urea and soluble protein levels on microbial protein synthesis in continuous culture of rumen contents. Journal of Animal Science 47: 944956.Google Scholar
Thornton, R.F. and Minson, D.J. 1972. The relationship between voluntary intake and mean apparent retention time in the rumen. Australian Journal of Agricultural Research 23: 871877.Google Scholar
Thornton, R.F. and Minson, D.J. 1973. The relationship between apparent retention time in the rumen, voluntary intake and apparent total tract digestibility of legumes and grass diets in sheep. Australian Journal of Agricultural Research 24: 889898.Google Scholar
Van Soest, P.J., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.Google Scholar
Vérité, R., Michalet-Dorea, B., Chapoutot, P., Peyraud, J.L. and Poncet, C. 1987. Révision du système des protéines digestibles dans l’intestin (P.D.I.). Bulletin Technique du CRZV de Theix, INRA 70: 1934.Google Scholar
Weston, R.H. 1985. The regulation of feed intake in herbage feed animals. Proceedings of the Nutrition Society of Australia 10: 5562.Google Scholar
Wheeler, W.E., Dinius, D.A. and Coombe, J.B. 1979. Digestibility, rate of digestion and rumino-reticulum parameters of beef steers fed low-quality roughages. Journal of Animal Science 49: 13571363.Google Scholar
Yang, W.Z. 1992. Etude de la cinétique de la colonisation des aliments dans le rumen des moutons. Conséquence sur la compartimentation de la biomasse et la dynamique à la sortie du rumen dans le cas de différents types de rations. Thesis no. 307 of the University Blaise Pascal, Clermont-Ferrand II, France.Google Scholar
Zinn, R.A. and Owens, F.N. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66: 157166.Google Scholar