Skip to main content Accessibility help
×
Home

Effect of feeding level, breed and milking potential on body tissues and organs of mature, non-lactating cows

  • St C. S. Taylor (a1) and J. I. Murray (a1)

Abstract

Body composition was studied in 20 mature, non-pregnant, non-lactating cows from five breeds (Hereford, Aberdeen Angus, Dexter, British Friesian and Jersey) kept on four feeding levels until they attained equilibrium body weights that were proportionately 0·7,0·9,1·1 or 1·3 of their normal adult body weight.

Significant breed differences were found in the proportions of body tissues and organs and these were associated with breed differences in lactability (i.e. genetic milking potential adjusted for body size). As a proportion of body weight, intra-abdominal fat, liver, spleen and uterus increased significantly with lactability and hide decreased significantly. Empty gut and gut fill also increased with lactability but not significantly. Liver proportion in dairy breeds was 1·26 times the proportion in beef breeds. Corresponding values for intra-abdominal fat and hide were 1·43 and 0·83.

The most dramatic increases with feeding level were in the proportions of subcutaneous fat, both intra-abdominal fat depots, and the udder. All fat depots were completely depleted when body weight decreased to about 0·6 of its normal adult value. Strong decreases occurred in the proportion of muscle, carcass bone and offal. The proportion of empty gut decreased significantly with increased feeding level. Liver, tail, thymus and possibly gut fill were the only traits entirely unaffected by feeding level.

The near-constancy of liver proportion at equilibrium implies that the rapid response of the liver to a change in feeding level is eventually matched in magnitude by the slower responses in other tissues and organs, so that the original proportionality of about 1 kg body tissue for each 10 g liver is eventually restored.

Copyright

References

Hide All
Baldwin, R. L., Smith, N. E., Taylor, J. and Sharp, M. 1980. Manipulating metabolic parameters to improve growth rate and milk secretion. Journal of Animal Science 51: 14161428.
Berg, R. T. and Butterfield, R. M. 1976. New concepts of cattle growth. Sydney University Press, Sydney.
Brody, S. 1945. Bioenergetics and growth. Reinhold, New York.
Burrin, D. G., Britton, R. A. and Ferrell, C. L. 1988. Visceral organ size and hepatocyte metabolic activity in fed and fasted rats. Journal of Nutrition 118:15471552.
Butler-Hogg, B. W. and Wood, J. D. 1982. The partition of body fat in British Friesian and Jersey steers. Animal Production 35: 253262.
Butterfield, R. M. 1988. New concepts of sheep growth. Sydney University Press, Sydney.
Butterfield, R. M., Griffiths, D. A., Thompson, J. M., Zamora, J. and James, A. M. 1983a. Changes in body composition relative to weight and maturity in large and small strains of Australian Merino rams. 1. Muscle, bone and fat. Animal Production 36: 2937.
Butterfield, R. M., Zamora, J., James, A. M., Thompson, J. M. and Reddacliff, K. J. 1983b. Changes in body composition relative to weight and maturity in large and small strains of Australian Merino rams. 3 Body organs. Animal Production 36: 461470.
Butterfield, R. M., Zamora, J., Thompson, J. M., Reddacliff, K. J. and Griffiths, D. A. 1984. Change in body composition relative to weight and maturity of Australian Dorset Horn rams and wethers. 1. Carcass muscle, fat and bone and body organs. Animal Production 39:251258.
Ferrell, C. L. and Jenkins, T. G. 1984. Relationships among various body components of mature cows. Journal of Animal Science 58: 222233.
Ferrell, C. L. and Jenkins, T. G. 1985. Cow type and the nutritional environment: nutritional aspects. Journal of Animal Science 61: 725741.
Ferrell, C. L. and Koong, K. J. 1986. Influence of plane of nutrition on body composition, organ size and energy utilization of Sprague-Dawley rats. Journal of Nutrition 116: 25252535.
Fourie, P. D., Kirton, A. H. and Jury, K. E. 1970. Growth and development of sheep. II. Effect of breed and sex on the growth and carcass composition of the Southdown and Romney and their cross. New Zealand Journal of Agricultural Research 13: 753770.
Geenty, K. G., Clarke, J. N. and Jury, K. E. 1979. Carcass growth and development of Romney, Corriedale, Dorset and crossbred sheep. New Zealand Journal of Agricultural Research 22: 2232.
Genstat V Committee. 1987. Genstat V reference manual. Oxford University Press, Oxford.
Hanset, R. 1986. Double muscling in cattle. In Exploiting new technologies in animal breeding: genetic developments (ed. Smith, C., King, J. W. B. and MacKay, J. C.), pp. 7180. Oxford University Press, Oxford.
Jones, S. D. M., Rompala, R. E. and Jeremiah, L. E. 1985. Growth and composition of the empty body in steers of different maturity types fed concentrate or forage diets. Journal of Animal Science 60: 427433.
Kirton, A. H., Fourie, P. D. and Jury, K. E. 1972. Growth and development of sheep. III. Growth of the carcass and non-carcass components of the Southdown and Romney and their cross and some relationships with composition. New Zealand Journal of Agricultural Research 15: 214227.
Koong, L. J., Ferrell, C. L. and Nienaber, J. A. 1982. Effects of plane of nutrition on organ size and fasting heat production in swine and sheep. In Energy metabolism of farm animals (ed. Ekern, A. and Sundstol, F.), European Association of Animal Production publication 29, pp. 245248.
Koong, L. J., Nienaber, J. A. and Mersmann, H. J. 1983. Effects of plane of nutrition on organ size and fasting heat production in genetically obese and lean pigs. Journal of Nutrition 113: 16261631.
Koong, L. J., Nienaber, J. A., Pekas, J. C. and Yen, J. T. 1982. Effect of plane of nutrition on organ size and fasting heat production in pigs. Journal of Nutrition 112: 16381642.
Larson, S. G. 1984. Ontogenetic and interspecific organ weight allometry in Old World monkeys. American Journal of Physical Anthropology 64: 5967.
McMeekan, C. P. 1940. Growth and development in the pig with special reference to carcass quality characteristics. Part III. Effect of the plane of nutrition on the form and composition of the bacon pig. Journal of Agricultural Science, Cambridge 30: 511569.
Murray, D. N. and Slezacek, O. 1978. The effect of varying periods of maintenance of live weight on some body components of sheep. Proceedings Australian Society of Animal Production 12: 237.
Palsson, H. 1955. Conformation and body composition. In Progress in the physiology of farm animals. Vol. 2 (ed. Hammond, J.), pp. 430542. Butter worths, London.
Pullar, J. D. and Webster, A. J. F. 1974. The energy cost of fat and protein deposition in the rat. British Journal of Nutrition 37: 355363.
Taylor, St C. S. 1980. Genetic size-scaling rules in animal growth. Animal Production 30: 161165.
Taylor, St C. S., Murray, J. I. and Thonney, M. L. 1989. Breed and sex differences among equally mature sheep and goats 4. Carcass muscle, fat and bone. Animal Production 49: 385409.
Taylor, St C. S., Thiessen, R. B. and Murray, J. I. 1986. Inter-breed relationship of maintenance efficiency to milk yield in cattle. Animal Production 43:3761.
Taylor, St C. S., Turner, H. G. and Young, G. B. 1981. Genetic control of equilibrium maintenance efficiency in cattle. Animal Production 33:179194.
Thonney, M. L. and Ross, D. A. 1987. Composition of gain of rats fed low or high protein diets and grown at controlled rates from 80 to 205 grams. Journal of Nutrition 117:21352141.
Thonney, M. L., Taylor, St C. S., Murray, J. and McClelland, T. H. 1987. Breed and sex differences in equally mature sheep and goats. 2. Body components at slaughter. Animal Production 45: 261276.
Truscott, T. G., Wood, J. D. and MacFie, H. J. H. 1983. Fat deposition in Hereford and Friesian steers. 1. Body composition and partitioning of fat between depots. Journal of Agricultural Science, Cambridge 100:257270.
Truscott, T. G., Wood, J. D. and Denny, H. R. 1983. Fat deposition in Hereford and Friesian steers. 2. Cellular development of the major fat depots, journal of Agricultural Science, Cambridge 100: 271276.
Tulloh, N. M. 1964. The carcass composition of sheep, cattle and pigs as functions of body weight. In Carcass composition and appraisal of meat animals, pp. 5.15.16. Commonwealth Scientific and Industrial Research Organisation, Melbourne.
Wainman, F. W., Smith, J. S. and Dewey, P. J. S. 1975. The nutritive value for sheep of ruminant diet AA6, a complete cobbed diet containing 30% barley straw. Journal of Agricultural Science, Cambridge 84: 109111.

Keywords

Effect of feeding level, breed and milking potential on body tissues and organs of mature, non-lactating cows

  • St C. S. Taylor (a1) and J. I. Murray (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed