Skip to main content Accessibility help

Effects of selenium source and level in diet on glutathione peroxidase activity, tissue selenium distribution, and growth performance in poultry

  • Radmila Marković (a1), Jelena Ćirić (a2), Marija Starčević (a2), Dragan Šefer (a1) and Milan Ž. Baltić (a2)...


Today, a few differing sources of selenium (Se), i.e. inorganic, organic, and nano forms of Se, are used as feed supplements for poultry. Published research indicates that nano-Se and organic Se possess comparable efficiency to inorganic Se in increasing GSH-Px activity of plasma and various tissues, but they deposit at higher rates in various tissues. However, there are principal differences in absorption mechanisms, metabolism, and efficiency of these three forms of Se. The aim of this review was to analyze the available literature on the effects of different Se sources and levels in the diet on glutathione peroxidase (GSH-Px) activity, tissue Se distribution and growth performance in poultry. Higher levels of Se increase GSH-Px activity in the body, but this reaches a plateau even if Se concentrations in diet increase further, while the deposition of Se in tissues increases as Se content in diet increases. In addition, many studies have shown the positive effects of adding Se to diet on growth performance in poultry. Optimal Se supplementation is necessary not only for good poultry health but also to ensure and preserve meat quality during storage and to provide human beings with this microelement.


Corresponding author

Author for correspondence: Jelena Ćirić, Department for Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade 11000, Serbia. E-mail:


Hide All
Arthur, JR (1992) Selenium metabolism and function. Proceedings of the Nutrition Society of Australia 17, 9198.
Arthur, JR (2000) The glutathione peroxidases. Cellular and Molecular Life Sciences 57, 18251835.
Baltić, , Dokmanović, SM, Bašić, M, Zenunović, A, Ivanović, J, Marković, R, Janjić, J and Mahmutović, H (2015) Effects of selenium yeast level in diet on carcass and meat quality, tissue selenium distribution and glutathione peroxidase activity in ducks. Animal Feed Science and Technology 210, 225233.
Baltić, , Dokmanović, SM, Bašić, M, Zenunović, A, Ivanović, J, Marković, R, Janjić, J, Mahmutović, H and Glamočlija, N (2016) Effects of dietary selenium-yeast concentrations on growth performance and carcass composition of ducks. Animal Production Science. doi:
Boostani, A, Sadeghi, AA, Mousavi, SN, Chamania, M and Kashana, N (2015) Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livestock Science 178, 330336.
Briens, M, Mercier, Y, Rouffineau, F, Vacchina, V and Geraert, PA (2013) Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. British Journal of Nutrition 110, 617624.
Briens, M, Mercier, Y, Rouffineau, F, Mercerand, F and Geraert, PA (2014) 2-hydroxy-4-methylselenobutanoic acid induces additional tissue selenium enrichment in broiler chickens compared with other selenium sources. Poultry Science 93, 8593.
Burk, RF (2002) Selenium, an antioxidant nutrient. Nutrition in Clinical Care 5, 7579.
Cai, SJ, Wu, CX, Gong, LM, Song, T, Wu, H and Zhang, LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poultry Science 91, 25322539.
Cantor, AH, Moorhead, PD and Musser, MA (1982) Comparative effects of sodium selenite and selenomethionine upon nutritional muscular dystrophy, selenium-dependent glutathione peroxidase, and tissue selenium concentrations of Turkey poults. Poultry Science 61, 478484.
Chadio, SE, Pappas, AC, Papanastasatos, A, Pantelia, D, Dardamani, A, Fegeros, K and Zervas, G (2015) Effects of high selenium and fat supplementation on growth performance and thyroid hormones concentration of broilers. Journal of Trace Elements in Medicine and Biology 29, 202207.
Chen, G, Wu, J and Li, C (2013) The effect of different selenium levels on production performance and biochemical parameters of broilers. Italian Journal of Animal Science 12, 79.
Chen, G, Wu, J and Li, C (2014) Effect of different selenium sources on production performance and biochemical parameters of broilers. Journal of Animal Physiology and Animal Nutrition 98, 747754.
Chithrani, BD and Chan, WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters 7, 15421550.
Choct, M, Naylor, AJ and Reinke, N (2004) Selenium supplementation affects broiler growth performance, meat yield and feather coverage. British Poultry Science 45, 677683.
Cichoski, AJ, Rotta, RB, Scheuermann, G, Cunha, JA and Barin, JS (2012) Investigation of glutathione peroxidase activity in chicken meat under different experimental conditions. Ciênc Tecnol Aliment 32, 661667.
Combs, GF and Combs, SB (1986) The Role of Selenium in Nutrition. Orlando, FL, USA: Academic Press.
Daun, C and Akesson, B (2004 a) Comparison of glutathione peroxidase activity, and of total and soluble selenium content in two muscles from chicken, turkey, duck, ostrich and lamb. Food Chemistry 85, 295303.
Daun, C and Akesson, B (2004 b) Glutathione peroxidase activity, and content of total and soluble selenium in five bovine and porcine organs used in meat production. Meat Science 66, 801807.
Dean, WF and Combs, GF (1981) Influence of dietary selenium on performance, tissue selenium content, and plasma concentrations of selenium dependent glutathione peroxidase, vitamin E, and ascorbic acid in ducklings. Poultry Science 60, 26552663.
Echevarria, MG, Henry, PR, Ammerman, CB, Rao, PV and Miles, RD (1988) Estimation of the relative bioavailability of inorganic selenium sources for poultry. 1. Effect of time and high dietary selenium on tissue selenium uptake. Poultry Science 67, 12951301.
European Commission (2014) European Union Register of Feed Additives Pursuant to Regulation (EC) No 1831/2003, 182nd ed. Luxembourg: Official Journal of the European Union.
Fischer, J, Bosse, A, Most, E, Mueller, A and Pallauf, J (2008) Selenium requirement of growing male turkeys. Poultry Science 49, 583591.
Forstrom, JW, Zakowski, JJ and Tappel, AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17, 26392644.
Hadley, KB and Sunde, RA (1997) Determination of dietary selenium requirement in female Turkey poults using glutathione peroxidase. In: Fischer, PWF, L'Abbë, MR, Cockell, KA and Gibson, RS (eds), Trace Elements in Man and Animals. Ottawa, Canada: NRC Research Press, pp. 5960.
Heindl, J, Ledvinka, Z, Englmaierova, M, Zita, L and Tumova, E (2010) The effect of dietary selenium sources and levels on performance, selenium content in muscle and glutathione peroxidase activity in broiler chickens. Czech Journal of Animal Science 55, 572578.
Hoffman, DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquatic Toxicology 57, 1126.
Hoffman, DJ and Heinz, GH (1998) Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environmental Toxicology and Chemistry 17, 161166.
Hu, CH, Li, YL, Xiong, L, Zhang, HM, Song, J and Xia, MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Animal Feed Science and Technology 177, 204210.
Jiang, ZY, Lin, YC, Zhou, GL, Luo, LH, Jiang, SQ and Chen, F (2009) Effects of dietary selenomethionine supplementation on growth performance, meat quality and antioxidant property in yellow broilers. Journal of Agricultural and Food Chemistry 57, 97699772.
Kim, YY and Mahan, DC (2003) Biological aspects of selenium in farm animals. Asian-Australasian Journal of Animal Sciences 16, 435444.
Kirchgessner, M, Gabler, S and Windisch, W (1997) Homeostatic adjustments of selenium metabolism and tissue selenium to widely varying selenium supply in 75Se labeled rats. Journal of Animal Physiology and Animal Nutrition 78, 2030.
Kuricova, S, Levkut, M, Boldizarova, K, Gresakova, L, Bobcek, R and Leng, L (2003) Chicken selenium status when fed a diet supplemented with Se-yeast. Acta Veterinaria Brno 72, 339346.
Leeson, S, Namkung, H, Caston, L, Durosoy, S and Schlegel, P (2008) Comparison of selenium levels and sources and dietary fat quality in diets for broiler breeders and layer hens. Poultry Science 87, 26052612.
Mahan, DC, Cline, TR and Richert, B (1999) Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics and loin quality. Journal of Animal Science 77, 21722179.
Mahmoud, KZ and Edens, FW (2005) Influence of organic selenium on hsp70 response of heat-stressed and enteropathogenic Escherichia coli-challenged broiler chickens (Gallus gallus). Comparative Biochemistry and Physiology 141, 6975.
Marković, R, Jovanović, BI, Baltić, ŽM, Šefer, D, Petrujkić, B and Sinovec, Z (2008) Effects of selenium supplementation as sodium selenite or selenized yeast and different amounts of vitamin E on selenium and vitamin E status of broilers. Acta Veterinaria Belgrade 58, 369380.
Marković, R, Baltić, ŽM, Šefer, D, Radulović, S, Drljačić, A, Ðorđević, V and Ristić, M (2010) Einfluss der futterung auf die qualitat von broilern. Fleischwirtschaft 10, 132136.
Marković, R, Ristić, M, Drljačić, A, Šefer, D, Šević, K, Pantić, S, Đurić, J and Baltić, (2014) Effect of different amounts of organic selenium in the diet on broiler carcass parameters. European Poultry Science 78, 19.
Marković, R, Ćirić, J, Drljačić, A, Šefer, D, Jovanović, I, Jovanović, D, Milanović, S, Trbović, D, Radulović, S, Baltić, and Starčević, M (2018) The effects of dietary Selenium-yeast level on glutathione peroxidase activity, tissue Selenium content, growth performance, and carcass and meat quality of broilers. Poultry Science. doi:
Mikulski, D, Jankowski, J, Zduńczyk, Z, Wróblewska, M, Sartowska, K and Majewska, T (2009) The effect of selenium source on performance, carcass traits, oxidative status of the organism, and meat quality of turkeys. Journal of Animal and Feed Sciences 18, 518530.
Mohapatra, P, Swain, RH, Mishra, SK, Behera, T, Swain, P, Mishra, SS, Behura Sabat, SC, Sethy, K, Dhama, K and Jayasankar, P (2014) Effects of dietary nano-Se on tissue Se deposition antioxidant status and immune functions in layer chicks. International Journal of Pharmaceutics 10, 160167.
National Research Council. Nutrient Requirements of Poultry (1994) 9th rev. Edn. Washington, DC: National Academy Press.
Ohlendorf, HM (2003) Ecotoxicology of selenium. In Hoffman, DJ, Rattner, BA, Burton, JA and Cairns, J (eds), Handbook of Ecotoxicology, 2nd Edn. London: CRC Press, pp. 465500.
Oldfield, JE (2002) Selenium World Atlas, Updated Edn. Grimbergen, Belgium: Selenium-Tellurium Development Association.
Ortuno, J, Ros, G, Periago, MJ, Martinez, C and Lopez, G (1996) Selenium bioavailability and methods of evaluation. Food Science and Technology International 2, 135150.
Pan, C, Huang, K, Zhao, Y, Qin, S, Chen, F and Hu, Q (2007) Effect of selenium source and level in hen's diet on tissue selenium deposition and egg selenium concentrations. Journal of Agricultural and Food Chemistry 55, 10271032.
Pavlata, L, Illek, J and Pechová, A (2001) Blood and tissue selenium concentration in calves treated with inorganic or organic selenium compounds – a comparison. Acta Veterinaria Brno 70, 1926.
Payne, RL and Southern, LL (2005) Comparison of inorganic and organic selenium sources for broilers. Poultry Science 84, 898902.
Perić, L, Milošević, N, Žikić, D, Kanački, Z, Džinić, N, Nollet, L and Spring, P (2009) Effect of selenium sources on performance and meat characteristics of broiler chickens. The Journal of Applied Poultry Research 18, 403409.
Rayman, MP (2000) The importance of selenium to human health. Lancet 356, 233241.
Schrauzer, GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. The Journal of Nutrition 130, 1653–1166.
Schrauzer, GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Advances in Food and Nutrition Research 47, 73112.
Selim, NA, Radwan, NL, Youssef, SF, Salah Eldin, TA and Abo, ES (2014) Effect of inclusion inorganic, organic or nano selenium forms in broiler diets on: 2-physiological, immunological and toxicity statuses of broiler chicks. International Journal of Poultry Science 3, 144155.
Ševčíková, S, Skrivan, M, Dlouha, G and Koucky, M (2006) The effect of selenium source on the performance and meat quality of broiler chickens. Czech Journal of Animal Science 51, 449457.
Suchý, P, Straková, E and Herzig, I (2014) Selenium in poultry nutrition: a review. Czech Journal of Animal Science 59, 495503.
Sunde, RA and Hadley, KB (2010) Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements. Experimental Biology and Medicine 235, 2331.
Sunde, RA and Hoekstra, WG (1980) Incorporation of selenium from selenite into selenocysteine into glutathione peroxidase in the isoloated perfused rat liver. Biochemical and Biophysical Research Communications 93, 11811188.
Surai, PF (2002) Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. World's Poultry Science Journal 58, 333347.
Surai, PF and Fisinin, VI (2014) Selenium in poultry breeder nutrition: an update. Animal Feed Science and Technology 191, 115.
Taylor, RM and Sunde, RA (2016) Selenoprotein transcript level and enzyme activity as biomarkers for selenium status and selenium requirements in the Turkey (Meleagris gallopavo). doi:
Upton, JR, Edens, FW and Ferket, PR (2008) Selenium yeast effect on broiler performance. International Journal of Poultry Science 7, 798805.
Vignola, G, Lambertini, L, Mazzone, G, Giammarco, M, Tassinari, M, Martelli, G and Bertin, G (2009) Effects of selenium source and level of supplementation on the performance and meat quality of lambs. Meat Science 81, 678685.
Wang, YB and Xu, BH (2008) Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Animal Feed Science and Technology 144, 306314.
Wang, H, Zhang, J and Yu, H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology & Medicine 42, 15241533.
Wang, YX, Zhan, XA, Yuan, D, Zhang, XW and Wu, RJ (2011) Effects of selenomethionine and sodium selenite supplementation on meat quality, selenium distribution and antioxidant status in broilers. Czech Journal of Animal Science 56, 305313.
White, CL and Hoekstra, WG (1979) The metabolism of selenite and selenomethionine in mouse fibroblasts grown in tissues culture. Biological Trace Element Research 1, 243257.
Wolfram, S, Berger, B, Grenacher, B and Scharrer, E (1989) Transport of seleno amino acids and their sulphur analogues across the intestinal brush border membrane. The Journal of Nutrition 119, 706712.
Yang, YR, Meng, FC, Wang, P, Jiang, YB, Yin, QQ, Chang, J, Zuo, RY, Zheng, QH and Liu, JX (2012) Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. African Journal of Biotechnology 11, 30313036.
Yoon, I, Werner, TM and Butler, JM (2007) Effect of source and concentration of selenium on growth performance and selenium retention in broiler chickens. Poultry Science 86, 727730.
Zhang, JS, Wang, H, Yan, X and Zhang, LD (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sciences 76, 10991109.
Zhang, J, Wang, X and Xu, T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicological Sciences 101, 2231.
Zhou, X and Wang, Y (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poultry Science 90, 680686.
Zoidis, E, Pappas, AC, Georgiou, CA, Komaitis, E and Fegeros, K (2010) Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comparative Biochemistry and Physiology – Part B 155, 294300.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Animal Health Research Reviews
  • ISSN: 1466-2523
  • EISSN: 1475-2654
  • URL: /core/journals/animal-health-research-reviews
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed