Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T23:28:59.530Z Has data issue: false hasContentIssue false

Multivariate analyses of morphological traits in indigenous chicken populations of Metekel zone, Northwestern Ethiopia

Published online by Cambridge University Press:  03 January 2017

Fasil Getachew*
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Solomon Abegaz
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Abraham Assefa
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Manaye Misganaw
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Yibrehu Emshaw
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Abebe Hailu
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Misikire Tessema
Affiliation:
Ethiopian Biodiversity Institute (EBI), Addis Ababa, Ethiopia
Cleopas Okore
Affiliation:
Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
*
Correspondence to: Fasil Getachew, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia. e-mail: f.getachew@cgiar.org; fasilgetachew7@gmail.com
Get access

Summary

An exploratory survey to phenotypically characterize indigenous chicken populations was carried out in Metekel zone of Northwestern Ethiopia in April 2013. A total of 69 males and 244 females were sampled to record their qualitative and quantitative traits. Eight quantitative and 16 qualitative variables were measured. Sampling included three districts representing different agroecological zones. Coefficient of variation for quantitative variables ranged from 6.38 to 52.37 percent in male sample populations and 4.59–21.4 percent in females. The chi-square tests for plumage colour of the neck, ear lobe colour and skeletal variant type were highly significant (χ2 < 0.05). The correct classification percentage from discriminant analysis was 93.73 and 98.41 percent for male and female sample populations, respectively, indicating the homogeneity of the chicken populations within districts. The stepwise discriminant analysis identified five variables for male and three variables for female sample populations, which had the highest discriminating power. Canonical analyses showed that differences in body measurements between indigenous chicken populations were highly significant (P <0.0001). The results obtained from on-farm performance evaluation indicated that the average age at first lay of hens, number of chicks weaned and mean number of eggs laid per bird per year were 5.5 months, 6.5, 50.1, respectively. This information will constitute the basis for further characterization and development of conservation strategies for indigenous chicken populations of Northwestern Ethiopia.

Résumé

Dans la zone de Metekel, au Nord-Ouest de l’Éthiopie, une étude d'exploration a été menée en avril 2013 pour caractériser phénotypiquement les populations de poules indigènes. Huit caractères quantitatifs et seize caractères qualitatifs ont été mesurés sur un échantillon total de 69 mâles et 244 femelles. L’échantillonnage s'est fait sur trois districts représentant différentes zones agro-écologiques. Le coefficient de variation des paramètres quantitatifs a varié de 6,38 pour cent à 52,37 pour cent chez les mâles et de 4,59 pour cent à 21,4 pour cent chez les femelles. Les tests du khi-carré pour la couleur du plumage du cou, la couleur des oreillons et le type squelettique ont été très significatifs (χ2 < 0,05). Le pourcentage d'animaux correctement classés grâce à l'analyse discriminante a été de 93,73 pour cent chez les mâles et de 98,41 pour cent chez les femelles, ce qui reflète l'homogénéité des populations au sein des districts. L'analyse discriminante pas à pas a décelé que la plus grande capacité de discrimination revenait à cinq variables dans les échantillons de mâles et à trois variables dans les échantillons de femelles. Les analyses canoniques ont montré que les différences sur les mesures corporelles entre les populations de poules indigènes ont été très significatives (P < 0,0001). Les résultats obtenus sur le terrain pour les performances des poules ont indiqué que l’âge moyen à la première ponte, le nombre de poussins élevés et le nombre moyen d’œufs pondus par poule et par an ont été de 5,5 mois, 6,5 et 50,1, respectivement. Ces informations fournissent la base pour de futures caractérisations et pour l’élaboration de stratégies de conservation pour les populations de poules indigènes du Nord-Ouest de l’Éthiopie.

Resumen

En abril de 2013 se llevó a cabo un estudio exploratorio en la zona de Metekel, en el Noroeste de Etiopía, para caracterizar fenotípicamente las poblaciones de gallinas autóctonas. Se midieron 8 caracteres cuantitativos y 16 cualitativos sobre una muestra total de 69 machos y 244 hembras. El muestreo incluyó tres distritos, representativos de diferentes zonas agroecológicas. El coeficiente de variación de los parámetros cuantitativos varió de 6,38 por ciento a 52,37 por ciento en las muestras de machos y de 4,59 por ciento a 21,4 por ciento en las muestras de hembras. Los tests chi-cuadrado para el color del plumaje del cuello, el color de las orejillas y la variante esquelética fueron altamente significativos (χ2 < 0,05). El porcentaje de animales clasificados correctamente gracias al análisis discriminante fue del 93,73 por ciento en los machos y del 98,41 por ciento en las hembras, lo cual refleja la homogeneidad de las poblaciones de gallinas dentro de los distritos. El análisis discriminante escalonado desveló que la mayor capacidad discriminatoria la presentaban cinco variables en las muestras de machos y tres variables en las muestras de hembras. Los análisis canónicos mostraron que las diferencias en las medidas corporales entre las poblaciones de gallinas autóctonas eran muy significativas (P < 0,0001). Los resultados obtenidos para los rendimientos en granja de las gallinas indicaron que la edad media a la primera puesta, el número de pollitos criados y el número medio de huevos puestos por ave y año fueron de 5,5 meses, 6,5 y 50,1, respectivamente. Esta información constituirá la base para posteriores caracterizaciones y para el desarrollo de estrategias de conservación de las poblaciones de gallinas autóctonas del Noroeste de Etiopía.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aklilu, E. 2013. On-farm phenotypic characterization of indigenous chicken and chicken production systems in Horro and Jarso districts, Oromia, Ethiopia. Haramaya University, Dire Dawa, Ethiopia. (M.Sc. thesis).Google Scholar
Aklilu, E., Gebreyesus, G., Kebede, K. & Dessie, T. 2014. Quantitative morphological traits as a measure of genetic diversity for two indigenous chicken ecotypes in Ethiopia. Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, 17–22 August 2014, Vancouver, Canada.Google Scholar
Blahova, J., Dobsikova, R., Strakova, E., Suchy, P. 2007. Effect of low environmental temperature on performance and blood system in broiler chickens (Gallus domesticus). Acta Veter. Brno 76: S17–S23.Google Scholar
CSA (Central Statistical Agency). 2007. Population and housing census of Ethiopia. Addis Ababa, Ethiopia, CSA.Google Scholar
CSA (Central Statistical Agency). 2013. Agricultural sample survey, report on livestock and livestock characteristics for the year 2012/13. Addis Ababa, Ethiopia, CSA, 194 pp.Google Scholar
DAGRIS. 2007. Domestic Animal Genetic Resources Information System (DAGRIS). In Kemp, S., Mamo, Y., Asrat, B. & Dessie, T., eds. Addis Ababa, Ethiopia, International Livestock Research Institute. (available at http://dagris.ilri.cgiar.org).Google Scholar
Dana, N., Tadelle, D., Elisabeth, H.V. & Johan, A.M. 2010. Morphological features of indigenous chicken populations of Ethiopia. Animal Breeding and Genomics Center, Wageningen University. Anim. Genet. Resources 46: 1123.Google Scholar
Dessie, T. 2003. Phenotypic and genetic characterizationof local chicken ecotypes in Ethiopia. Humboldt University of Berlin, Berlin. (Ph.D. thesis), 209 pp.Google Scholar
Desta, T., Dessie, T., Bettridge, J., Lynch, S.E., Melese, K., Collins, M., Christley, R.M., Wigley, P., Kaiser, P., Terfa, Z., Mwacharo, J.M. & Hanotte, O. 2013. Signature of artificial selection and ecological landscape on morphological structures of Ethiopian village chickens. Anim. Genet. Resources 52: 1729.CrossRefGoogle Scholar
Dong Xuan, D.T., Szalay, I., Su, V.V., Tieu, H.V. & Dang Vang, N. 2006. Animal genetic resources and traditional farming in Vietnam. Anim. Gene. Resources Inf. 38: 117.CrossRefGoogle Scholar
Duguma, R. 2006. Phenotypic characterization of some indigenous chicken ecotypes of Ethiopia. Livest. Res. Rural Dev. 18, Article #131. Retrieved December 15, 2014 (available at http://lrrd.org/lrrd18/9/dugu18131.htm).Google Scholar
Egahi, J.O., Dim, N.I., Momoh, O.M. & Gwaza, D.S. 2010. Variations in qualitative traits in the Nigerian local chicken. Int. J. Poult. Sci. 9(10): 978979.Google Scholar
Eltayeb, N.M., Wani, C.E. & Yousif, I.A. 2010. Assessment of broodiness and its influence on production performance and plasma prolactin level in native chicken of the Sudan. Asian J. Poult. Sci. 4(1): 16.Google Scholar
FAO. 2001. Working definitions for use in developing country reports and providing supporting data. Special issue of state of the world. Anim. Genet. Resources Inf. 30: 3440.Google Scholar
FAO. 2012. Phenotypic characterization of animal genetic resources. Rome, FAO Animal Production and Health Guidelines No. 11.Google Scholar
Forsido, T. 1986. Studies on the meat production potential of some local strains of chickens in Ethiopia. J.L. University of Geissen, Geissen, Germany. (Ph.D. thesis). 186pp.Google Scholar
GERDP (Grand Renaissance Dam Project). 2012. Field visit report (unpublished). Retrieved July 14, 2015 (available at http://www.internationalrivers.org/files/attached-files/grandren_ethiopia_2013.pdf).Google Scholar
Getu, A., Alemayehu, K. & Wultaw, Z. 2014. Phenotypic characterization of indigenous chicken ecotypes in the north Gondar zone, Ethiopia. Anim. Genet. Resources 54: 4351.Google Scholar
Hassen, H. 2007. Phonotypic and genetic characterization of indigenous chicken populations in Northwest Ethiopia. Submitted to the Faculty of National and Agricultural Sciences, Department of Animal, Wild Life and Grass Land Sciences, University of the Free State, Bloemfontein and South Africa. (Ph.D. thesis).Google Scholar
Kibret, B. 2008. In situ characterization of local chicken eco-type for functional traits and production system in Fogera district, Amhara regional state. Submitted to the Department of Animal Science, Haramaya University, Dire Dawa, Ethiopia. (M.Sc. thesis).Google Scholar
Kondombo, S.R. 2005. Improvement of village chicken production in a mixed (chicken–ram) farming system in Burkina Faso. Wageningen Institute of Animal Sciences, Animal Nutrition Group, Wageningen University, The Netherlands. (Ph.D. thesis). 208 pp.Google Scholar
Kuit, H.G., Traore, A. & Wilson, R.T. 1986. Livestock production in Central Mali: ownership, management and productivity of poultry in the traditional sector. Trop. Anim. Health Prod. 18: 222231.CrossRefGoogle ScholarPubMed
Melesse, A. & Negesse, T. 2011. Phenotypic and morphological characterization of indigenous chicken populations in southern region of Ethiopia. Anim. Genet. Resources 49: 1931.Google Scholar
Moges, F., Melesse, A. & Dessie, T. 2010. Assessment of village chicken production system and evaluation of the productive and reproductive performance of local chicken ecotype in Bure district, northwest Ethiopia. Afr. J. Agric. Res. 5(13): 17391748.Google Scholar
Mourad, M. & Gbanamou, G. 1997. Evaluation de la productivitéet de la mortalité de la poule locale sur le plateau de Sankaran, Faranah, Guinée, en 1993–1994. Révued’élevageet de, Médécine Vétérinaire des Pays Tropicaux 50: 343349.Google Scholar
MZARDO (Metekel Zone Agricultural and Rural Development Office). 2007. Annual report on general agricultural related activities. Gilgelbeles, Ethiopia.Google Scholar
Negassa, D., Melesse, A. & Banerjee, S. 2014. Phenotypic characterization of indigenous chicken populations in Southeastern Oromia Regional State of Ethiopia. Anim. Genet. Resources 55: 101113.Google Scholar
Nigussie, H. 2013. On-farm phenotypic characterization of indigenous chicken and chicken production systems in southern zone of Tigray, northern Ethiopia. Haramaya University, Dire Dawa, Ethiopia. (M.Sc. thesis).Google Scholar
Orheruata, A.M., Adegite, A.V. & Okpeku, M. 2006. Morphological and egg characteristics of indigenous chicken in Edo State, Nigeria. Nigerian Agriculture Journal 37: 114123.Google Scholar
SAS (Statistical Analysis Systems). 2003. Statistical analysis system software. SAS Version 9.1.3, Cary, NC, USA, SAS Institute Inc..Google Scholar
SPSS (Statistical Package for Social Sciences). 2011. SPSS 20.0 for Windows User's Guide Release. Chicago, SPSS Inc.Google Scholar
Ssewannyana, E., Ssali, A. & Kasadha, T., Dhikusooka, M., Kasoma, P., Kalema, J., Kwatotyo, B.A. & Aziku, L. 2008. On-farm characterization of indigenous chickens in Uganda. J. Anim. Plant Sci. 1(2): 3337.Google Scholar
Vij, P.K., Tantia, M.S. & Vijh, R.K. 2006. Characterization of Punjab brown chicken. Anim. Genet. Resources Inf. 39: 6576.Google Scholar
Yami, A. & Dessie, T. 1997. Status of poultry research and development in Ethiopia. Proceedings of the 5th National Conference of the Ethiopian Society of Animal Production (ESAP), 15 May 1997, Addis Abeba, Ethiopia.Google Scholar
Youssao, I.A.K., Tobada, P.C., Koutinhouin, B.G., Dahouda, M., Idrissou, N.D., Bonou, G.A., Tougan, U.P., Ahounou, S., Yapi-Gnaoré, V., Kayang, B., Rognon, X. & Tixier-Boichard, M. 2010. Phenotypic characterisation and molecular polymorphism of indigenous poultry populations of the species Gallus gallus of savannah and forest ecotypes of Benin. Afr. J. Biotechnol. 9(3): 369381.Google Scholar