Skip to main content Accessibility help
×
Home

Solving the tool switching problem with memetic algorithms

  • Jhon Edgar Amaya (a1), Carlos Cotta (a2) and Antonio J. Fernández-Leiva (a2)

Abstract

The tool switching problem (ToSP) is well known in the domain of flexible manufacturing systems. Given a reconfigurable machine, the ToSP amounts to scheduling a collection of jobs on this machine (each of them requiring a different set of tools to be completed), as well as the tools to be loaded/unloaded at each step to process these jobs, such that the total number of tool switches is minimized. Different exact and heuristic methods have been defined to deal with this problem. In this work, we focus on memetic approaches to this problem. To this end, we have considered a number of variants of three different local search techniques (hill climbing, tabu search, and simulated annealing), and embedded them in a permutational evolutionary algorithm. It is shown that the memetic algorithm endowed with steepest ascent hill climbing search yields the best results, performing synergistically better than its stand-alone constituents, and providing better results than the rest of the algorithms (including those returned by an effective ad hoc beam search heuristic defined in the literature for this problem).

Copyright

Corresponding author

Reprint requests to: Carlos Cotta, Departamento Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain. E-mail: ccottap@lcc.uma.es

References

Hide All
Al-Fawzan, M., & Al-Sultan, K. (2003). A tabu search based algorithm for minimizing the number of tool switches on a flexible machine. Computers & Industrial Engineering 44(1), 3547.
Amaya, J., Cotta, C., & Fernández, A. (2008). A memetic algorithm for the tool switching problem. In Hybrid Metaheuristics 2008 (Blesa, M., Blum, C., Cotta, C., Fernández Leiva, A.J., Gallardo Ruiz, J.E., Roli, A., & Sampels, M., Eds.), LNCS, Vol. 5296, pp. 190202. Málaga: Springer–Verlag.
Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press.
Bard, J.F. (1988). A heuristic for minimizing the number of tool switches on a flexible machine. IIE Transactions 20(4), 382391.
Belady, L. (1966). A study of replacement algorithms for virtual storage computers. IBM Systems Journal 5, 78101.
Błażewicz, J., & Finke, G. (1994). Scheduling with resource management in manufacturing systems. European Journal of Operational Research 76, 114.
Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 35(3), 268308.
Cotta, C., & Fernández, A. (2007). Memetic algorithms in planning, scheduling and timetabling. In Evolutionary Scheduling (Dahal, K., Tan, K.-C., & Cowling, P., Eds.), pp. 130. Berlin: Springer–Verlag.
Cotta, C., & Troya, J. (1998). Genetic forma recombination in permutation flowshop problems. Evolutionary Computation 6(1), 2544.
Cotta, C., & Troya, J. (2003). Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18(2), 137153.
Crama, Y., Kolen, A., Oerlemans, A., & Spieksma, F. (1994). Minimizing the number of tool switches on a flexible machine. International Journal of Flexible Manufacturing Systems 6, 3354.
Crama, Y., Moonen, L., Spieksma, F., & Talloen, E. (2007). The tool switching problem revisited. European Journal of Operational Research 182(2), 952957.
Dawkins, R. (1976). The Selfish Gene. Oxford: Clarendon Press.
Diekmann, R., Lüling, R., & Simon, J. (1993). Problem independent distributed simulated annealing and its applications. In Applied Simulated Annealing (Vidal, R., Ed.), LNEMS, Vol. 3962, pp. 1744. Berlin: Springer–Verlag.
ElMaraghy, H. (1985). Automated tool management in flexible manufacturing. Journal of Manufacturing Systems 4(1), 114.
Elmohamed, M.A.S., Coddington, P.D., & Fox, G. (1998). A comparison of annealing techniques for academic course scheduling. In Practice and Theory of Automated Timetabling II (Burke, E., & Carter, M., Eds.), LCS, Vol. 1498, pp. 92112. Berlin: Springer–Verlag.
Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming B 98, 2347.
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32(200), 675701.
Gallardo, J., Cotta, C., & Fernández, A. (2007). On the hybridization of memetic algorithms with branch-and-bound techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37(1), 7783.
Ghiani, G., Grieco, A., & Guerriero, E. (2007). An exact solution to the TLP problem in an NC machine. Robotics and Computer-Integrated Manufacturing 23(6), 645649.
Glover, F. (1989 a). Tabu search—part I. ORSA Journal of Computing 1(3), 190206.
Glover, F. (1989 b). Tabu search—part II. ORSA Journal of Computing 2(1), 431.
Hertz, A., Laporte, G., Mittaz, M., & Stecke, K. (1998). Heuristics for minimizing tool switches when scheduling part types on a flexible machine. IIE Transactions 30, 689694.
Hertz, A., & Widmer, M. (1993). An improved tabu search approach for solving the job shop scheduling problem with tooling constraints. Discrete Applied Mathematics 65, 319345.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 6570.
Hong-Bae, J., Yeong-Dae, K., & Suh, S.H.-W. (1999). Heuristics for a tool provisioning problem in a flexible manufacturing system with an automatic tool transporter. IEEE Transactions on Robotics and Automation 15(3), 488496.
Hop, N.V. (2005). The tool-switching problem with magazine capacity and tool size constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 38(5), 617628.
Houck, C., Joines, J., Kay, M., & Wilson, J. (1997). Empirical investigation of the benefits of partial Lamarckianism. Evolutionary Computation 5(1), 3160.
Huang, M., Romeo, F., & Sangiovanni-Vincentelli, A. (1986). An efficient general cooling schedule for simulated annealing. Proc. 1986 IEEE Int. Conf. Computer Aided Design (ICCAD), pp. 381384. Santa Clara, CA: IEEE Press.
Iman, R., & Davenport, J. (1980). Approximations of the critical region of the Friedman statistic. Communications in Statistics 9, 571595.
Jones, T. (1995). Evolutionary algorithms, fitness landscapes and search. PhD Thesis. University of New Mexico.
Kashyap, A., & Khator, S. (1994). Modeling of a tool shared flexible manufacturing system. Proc. 26th Simulation Conf. Int. Society for Computer Simulation, pp. 986993, San Diego, CA.
Keung, K.W., Ip, W.H., & Lee, T.C. (2001). A genetic algorithm approach to the multiple machine tool selection problem. Journal of Intelligent Manufacturing 12(4), 331342.
Kiran, A., & Krason, R. (1988). Automated tooling in a flexible manufacturing system. Industrial Engineering 20, 5257.
Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science 4598, 671680.
Krasnogor, N., & Smith, J. (2005). A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation 9(5), 474488.
Laporte, G., Salazar-González, J., & Semet, F. (2004). Exact algorithms for the job sequencing and tool switching problem. IIE Transactions 36(1), 3745.
Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artificial Intelligence Review 13, 129170.
Lehmann, E., & D'Abrera, H. (1998). Nonparametrics: Statistical Methods Based on Ranks. Englewood Cliffs, NJ: Prentice–Hall.
Maheswaran, R., Ponnambalam, S., & Aranvidan, C. (2005). A meta-heuristic approach to single machine scheduling problems. International Journal of Advanced Manufacturing Technology 25, 772776.
Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms, Caltech Concurrent Computation Program Technical Report 826. Pasadena, CA: California Institute of Technology.
Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms. In Handbook of Metaheuristics (Glover, F.W., & Kochenberger, G.A., Eds.), pp. 105144. Boston: Kluwer Academic.
Moscato, P., & Cotta, C. (2007). Memetic algorithms. In Handbook of Approximation Algorithms and Metaheuristics (González, T., Ed.), Chap. 27. New York: Chapman & Hall/CRC Press.
Moscato, P., & Cotta, C. (2010). A modern introduction to memetic algorithms. In Handbook of Metaheuristics (Gendrau, M., & Potvin, J.-Y., Eds.), Vol. 146, 2nd ed., pp. 141183. New York: Springer–Verlag.
Nguyen, Q.H., Ong, Y.-S., & Krasnogor, N. (2007). A study on the design issues of memetic algorithm. Proc. 2007 IEEE Congress on Evolutionary Computation (Srinivasan, D., & Wang, L., Eds.), pp. 23902397. Singapore: IEEE Press.
Oerlemans, A. (1992). Production planning for flexible manufacturing systems. PhD Thesis. University of Limburg. Maastricht.
Oliver, I., Smith, D., & Holland, J. (1987). A study of permutation crossover operators on the traveling salesman problem. Proc. 2nd Int. Conf. Genetic Algorithms (Grefenstette, J., Ed.), pp. 224230. Hillsdale, NJ: Erlbaum.
Otten, R., & van Ginneken, L. (1989). The Annealing Algorithm. New York: Kluwer Academic.
Privault, C., & Finke, G. (1995). Modelling a tool switching problem on a single NC-machine. Journal of Intelligent Manufacturing 6(2), 8794.
Prügel-Bennett, A. (2010). Benefits of a population: five mechanisms that advantage population-based algorithms. IEEE Transactions on Evolutionary Computation 14(4), 500517.
Reeves, C. (1994). Genetic algorithms and neighbourhood search. In Evolutionary Computing (Fogarty, T., Ed.), LNCS, Vol. 865, pp. 115130. Berlin: Springer–Verlag.
Shirazi, R., & Frizelle, G. (2001). Minimizing the number of tool switches on a flexible machine: an empirical study. International Journal of Production Research 39(15), 35473560.
Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., & Whitley, C. (1991). A comparison of genetic sequencing operators. Proc. 4th Int. Conf. Genetic Algorithms (Belew, R., & Booker, L., Eds.), pp. 6976. San Mateo CA: Morgan Kauffman.
Sudholt, D. (2009). The impact of parametrization in memetic evolutionary algorithms. Theoretical Computer Science 410(26), 25112528.
Tang, C., & Denardo, E. (1988). Models arising from a flexible manufacturing machine, part I: minimization of the number of tool switches. Operations Research 36(5), 767777.
Tzur, M., & Altman, A. (2004). Minimization of tool switches for a flexible manufacturing machine with slot assignment of different tool sizes. IIE Transactions 36(2), 95110.
Zhou, B.-H., Xi, L.-F., & Cao, Y.-S. (2005). A beam-search-based algorithm for the tool switching problem on a flexible machine. International Journal of Advanced Manufacturing Technology 25(9–10), 876882.

Keywords

Solving the tool switching problem with memetic algorithms

  • Jhon Edgar Amaya (a1), Carlos Cotta (a2) and Antonio J. Fernández-Leiva (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed