Skip to main content Accessibility help
×
Home

Improved knowledge management through first-order logic in engineering design ontologies

  • Paul Witherell (a1), Sundar Krishnamurty (a1), Ian R. Grosse (a1) and Jack C. Wileden (a2)

Abstract

This paper presents the use of first-order logic to improve upon currently employed engineering design knowledge management techniques. Specifically, this work uses description logic in unison with Horn logic, to not only guide the knowledge acquisition process but also to offer much needed support in decision making during the engineering design process in a distributed environment. The knowledge management methods introduced are highlighted by the ability to identify modeling knowledge inconsistencies through the recognition of model characteristic limitations, such as those imposed by model idealizations. The adopted implementation languages include the Semantic Web Rule Language, which enables Horn-like rules to be applied to an ontological knowledge base and the Semantic Web's native Web Ontology Language. As part of this work, an ontological tool, OPTEAM, was developed to capture key aspects of the design process through a set of design-related ontologies and to serve as an application platform for facilitating the engineering design process. The design, analysis, and optimization of a classical I-beam problem are presented as a test-bed case study to illustrate the capabilities of these ontologies in OPTEAM. A second, more extensive test-bed example based on an industry-supplied medical device design problem is also introduced. Results indicate that well-defined, networked relationships within an ontological knowledge base can ultimately lead to a refined design process, with guidance provided by the identification of infeasible solutions and the introduction of “best-case” alternatives. These case studies also show how the application of first-order logic to engineering design improves the knowledge acquisition, knowledge management, and knowledge validation processes.

Copyright

References

Hide All
Alberts, L.K., & Dikker, F. (1992). Integrating standards and synthesis knowledge using the YMIR ontology. In Artificial Intelligence in Design (Gero, J.S., & Sudweeks, F., Eds.), pp. 517534. Boston: Kluwer Academic.
Becker, B.J., & Kaepp, G.A. (1997). BDS: a knowledge-based bumber design system. 1997 ASME Design Engineering Technical Conf., Paper No. DETC97/CIE-4272, Sacramento, CA.
Bohm, M.R., Stone, R.B., Simpson, T.W., & Steva, E.D. (2006). Introduction of a data schema: the inner workings of a design repository. Proc. ASME IDETC/CIE.
Borgida, A. (1996). On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1–2), 353367.
Brown, D.C. (1985). Capturing mechanical design knowledge. Proc. ASME Int. Computers in Engineering Conf., Boston.
Buchanan, B.G., & Shortliffe, E.H. (1984). Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project. Reading, MA: Addison–Wesley.
Bullinger, H.J., Warschat, J., Schumacher, O., Slama, A., & Ohlhausen, P. (2005). Ontology-Based Project Management for Acceleration of Innovation Projects. LNCS, Vol. 3379. New York: Springer.
de Kleer, J. & Brown, J.S. (1983). Assumptions and ambiguities in mechanistic mental models. In Mental Models (Genter, D., & Stevens, E.L., Eds.), pp. 155190. Hillsdale, NJ: Erlbaum.
Dos Santos, B.L., & Mookerjee, V. (1991). Towards optimal expert system design, Proc. 24th Hawaii Int. Conf. Systems Sciences.
Erickson, D.M., Brown, D.R., Hwang, K., Pan, Y., & Daga, A. (1997). A framework for cooperating engineering knowledge agents. 1997 ASME Design Engineering Technical Conf., Paper No. DETC97/CIE-4299, Sacramento, CA.
Euler, E.E., Jolly, S.D., & Curtis, H.H. (2001). The failures of the Mars Climate Orbiter and Mars Polar Lander: a perspective from the people involved. Proc. Guidance and Control 2001, Paper No. AAS 01-074. Springfield, VA: American Astronautical Society.
Friedman-Hill, E. (2003). Jess in Action. Greenwich, CT: Manning Publications.
Genesereth, M., & Fikes, R. (2001). Knowledge Interchange Format Version 3.0 Reference Manual Technical Report, Logic Group Report Logic-92-1, Stanford University. Accessed at http://logic.stanford.edu/kif/Hypertext/kif-manual.html
Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F., & Tu, S.W. (2003). The evolution of Protégé: an environment for knowledge-based systems development. International Journal of Human–Computer Studies 58(1), 89123.
Goel, A., Bhatta, S., & Stroulia, E. (1996). KRITIK: an early case-based design system. In Issues and Applications of Case-Based Reasoning to Design (Maher, M., & Pu, P., Eds.). Mahwah, NJ: Erlbaum.
Goel, A., Gomez, A., Grue, N., Murdock, J.W., Recker, M., & Govindaraj, T. (1996). Explanatory interface in interactive design environments. In Artificial Intelligence in Design (Gero, J.S., Ed.). Boston: Kluwer Academic.
Gottlob, G., & Nejdl, W. (1990). Proc. Expert Systems in Engineering, Principles and Applications, Int. Workshop. LNCS, Vol. 462. New York: Springer.
Grosse, I.R., Milton-Benoit, J.M., & Wileden, J.C. (2005). Ontologies for supporting engineering analysis models. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing 19(1), 118.
Grosof, N.B., Horrocks, I., Volz, R., & Cecker, S. (2003). Description logic programs: combining logic programs with description logic. Proc. 12th Int. Conf. World Wide Web WWW2003, pp. 4857, Budapest, Hungary, May 20–24.
Gruber, T., & Olsen, G. (1994). An ontology for engineering mathematics. Proc. 4th Int. Conf. Principles of Knowledge Representation and Reasoning (Doyle, J., Torasso, P., & Sandewall, E., Eds.), pp. 258269. San Mateo, CA: Morgan Kaufmann.
Haarslev, V., Möller, R., & Wessel, M. (2004). Querying the Semantic Web with Racer + nRQL. KI-04 Workshop on Applications on Description Logics.
Henson, B., Juster, N., & de Pennington, A. (1994). Towards an integrated representation of function, behavior and form, computer aided conceptual design. Proc. 1994 Lancaster Int. Workshop on Engineering Design (Sharpe, J., & Oh, V., Eds.), pp. 95111. Lancaster: Lancaster University EDC.
Horn, A. (1956). On sentences which are true of direct unions of algebras. Journal of Symbolic Logic 16, 1421.
Horrocks, I., Patel-Schneider, P., Bechhofer, S., & Tsarkov, D. (2005). OWL rules: a proposal and prototype implementation. Journal of Web Semantics 3(1), 2340.
Iwasaki, Y., & Chandrasekaran, B. (1992). Design verification through function and behavior-oriented representations: bridging the gap between function and behavior. In Artificial Intelligence in Design (Gero, J.S., Ed.), pp. 597616. Boston: Kluwer Academic.
Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., & Hendler, J. (2005). Swoop: a Web ontology editing browser. Journal of Web Semantics 4(1). doi:10.1016/j.websem.2005.10.001
Kanuri, N. (2007). Ontologies and methods for interoperability of engineering analysis models (EAM's) in an e-design environment. Master's Thesis. University of Massachusetts Amherst.
Kifer, M., & Lausen, G. (1989). F-logic: a higher-order language for reasoning about objects, inheritance, and scheme. Int. Conf. Management of Data, pp. 134146.
Kim, K., Yang, H., & Manley, D. (2006). Assembly design ontology for service-oriented design collaboration. Computer-Aided Design and Applications 3(5), 603613.
Levy, A.Y., & Rousset, M.C. (1998). Combining Horn rules and description logics in CARIN. Artificial Intelligence 104(1–2), 165209.
Morris, K.N. (1998). Agent support for collaborative design, 1998 ASME Computers in Engineering Conf., Paper No. DETC98/CIE-5551.
Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., & Musen, M.A. (2001). Creating Semantic Web contents with Protege-2000. IEEE Intelligent Systems 16(2), 6071.
Qian, L., & Gero, J.S. (1996). Function–behavior–structure paths and their role in analogy based design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 10(4), 289312.
Patil, L., Dutta, D., & Sriram, R. (2005). Ontology-based exchange of product data semantics. IEEE Transactions on Automation Science and Engineering 2(3), 213225.
Prasad, B. (2004). Knowledge driven automation. Enterprise Engineering Systems, ParTech 2004.
Ranta, M., Mäntylä, M., Umeda, Y., & Tomiyama, T. (1996). Integration of functional and feature based product modeling—the IMS/GNOSIS Experience. Computer-Aided Design 28(5), 371381.
Rogers, J. (2004). Getting the most gains out of knowledge-based engineering—Parker Aerospace Experiences. 2004 Annual Conf. TechniFair.
Schmidt-Schauß, M. (1989). Subsumption in KL-ONE is undecidable. Proc. 1st Int. Conf. Principles of Knowledge Representation and Reasoning KR ‘89 (Brachman, R.J., Levesque, H.J., & Reiter, R., Eds.), pp. 421431. Los Altos, CA: Morgan Kaufmann.
Shepar, M.S., Bachmann, L., Georges, M.K., & Korngold, E.V. (1990). Framework for reliable generation and control of analysis idealizations. Computer Methods in Applied Mechanics and Engineering 82(1–3), 257280.
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., & Katz, Y. (2004). Pellet: a practical OWL-DL reasoner. 3rd Int. Semantic Web Conf. ISWC2004.
Spiegelhalter, D., Dawid, A., Lauritzen, S., & Cowel, R. (1993). Bayesian analysis in expert systems. Statistical Science 8(3), 219247.
Szykman, S., Sriram, R.D., Bochenek, C., & Racz, J. (1998). The NIST Design Repository Project. Advances in Soft Computer-Engineering Design and Manufacturing. London: Springer–Verlag.
Szykman, S., Sriram, R.D., Bochenek, C., Racz, J.W., & Senfaute, J. (2000). Design repositories: engineering design's new knowledge base. Intelligent Systems and Their Applications 15, 4855.
Tsarkov, D., Riazanov, A., Bechhofer, S., & Horrocks, I. (2004). Using vampire to reason with OWL. 3rd Int. Semantic Web Conf.
Turkiyyah, G.M., & Fenves, S.J. (1996). Knowledge-based assistance for finite element modeling. AI Applications in Civil and Structural Engineering 11(3), 2332.
Umeda, Y., Ishii, M.,Yoshioka, M., Shimomura, Y., & Tomiyama, T. (1996). Supporting conceptual design based on the function–behavior–state modeler. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 10, 275288.
Wagner, G., Tabet, S., & Boley, H. (2003). MOF-RuleML: the abstract syntax of RuleML as a MOF model. Integrate 2003, OMG Meeting, Boston.
Witherell, P., Krishnamurty, S., & Grosse, I.R. (2006). Ontologies for supporting engineering design optimization. Journal of Computing and Information Science in Engineering 7(2), 141150.

Keywords

Related content

Powered by UNSILO

Improved knowledge management through first-order logic in engineering design ontologies

  • Paul Witherell (a1), Sundar Krishnamurty (a1), Ian R. Grosse (a1) and Jack C. Wileden (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.