Skip to main content Accessibility help

Efficient hybrid group search optimizer for assembling printed circuit boards

  • Cheng-Jian Lin (a1) and Mei-Ling Huang (a2)


Assembly optimization of printed circuit boards (PCBs) has received considerable research attention because of efforts to improve productivity. Researchers have simplified complexities associated with PCB assembly; however, they have overlooked hardware constraints, such as pick-and-place restrictions and simultaneous pickup restrictions. In this study, a hybrid group search optimizer (HGSO) was proposed. Assembly optimization of PCBs for a multihead placement machine is segmented into three problems: the (1) auto nozzle changer (ANC) assembly problem, (2) nozzle setup problem, and (3) component pick-and-place sequence problem. The proposed HGSO proportionally applies a modified group search optimizer (MGSO), random-key integer programming, and assigned number of nozzles to an ANC to solve the component picking problem and minimize the number of nozzle changes, and the place order is treated as a traveling salesman problem. Nearest neighbor search is used to generate an initial place order, which is then improved using a 2-opt method, where chaos local search and a population manager improve efficiency and population diversity to minimize total assembly time. To evaluate the performance of the proposed HGSO, real-time PCB data from a plant were examined and compared with data obtained by an onsite engineer and from other related studies. The results revealed that the proposed HGSO has the lowest total assembly time, and it can be widely employed in general multihead placement machines.


Corresponding author

Author for correspondence: Mei-Ling Huang, E-mail:


Hide All
Al-Anzi, F and Allahverdi, A (2013) An artificial immune system heuristic for two-stage multi-machine assembly scheduling problem to minimize total completion time. Journal of Manufacturing Systems 32, 825830.
Alkaya, AF and Duman, E (2013) Application of sequence-dependent traveling salesman problem in printed circuit board assembly. IEEE Transactions on Components, Packaging and Manufacturing Technology 3, 10631076.
Ashayeri, J, Ma, N and Sotirov, R (2011) An aggregated optimization model for multi-head SMD placements. Computers & Industrial Engineering 60, 99105.
Ball, MO and Magazine, MJ (1998) Sequencing of insertions in printed circuit board assembly. Operations Research 36, 192201.
Chang, PC, Hsieh, JC and Wang, CY (2007) Adaptive multi-objective genetic algorithms for scheduling of drilling operation in printed circuit board industry. Applied Soft Computing 7, 800806.
Chen, PH and Chang, HC (1995) Large-scale economic dispatch by genetic algorithm. IEEE Transactions on Power Systems 10, 19191926.
Chen, S and Shen, Y (2010) An integrated mathematical model for optimizing the component placement process with a multi-heads placement machine Proc. of the 29th Chinese Control Conf. (CCC), 1839-1842, Beijing, China, July 29–31.
Chen, CL and Wichman, CA (1993) A systematic approach for design and planning of mechanical assemblies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7, 1936.
Chen, T, Luo, J and Hu, Y (2011) Component placement process optimization for multi-head surface mounting machine based on tabu search and improved shuffled frog-leaping algorithm. 3rd Int. Workshop on Intelligent Systems and Applications (ISA), 1–4, Wuhan, China, May 28–29.
Chen, T, Luo, J, Du, J and Hu, Y (2012 a) A modified tabu search algorithm for component placement process optimization of multi-head surface mounting machine. Proc. of the 31st Chinese Control Conf., Hefei, China, July 25–27.
Chen, D, Wang, J, Zou, F, Hou, W and Zhao, C (2012 b) An improved group search optimizer with operation of quantum-behaved swarm and its application. Applied Soft Computing 12, 712725.
Csaba, BR and Nevalainen, OS (2015) The modular tool switching problem. European Journal of Operational Research 242, 100106.
Du, X and Li, Z (2008) Placement process optimization of dual-gantry turret placement machine. Proc. of the 2008 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics1266–1271, Xian, China, July 2–5.
Fu, HP and Su, CT (2000) A comparison of search techniques for minimizing assembly time in printed wiring assembly. International Journal of Production Economics 63, 8398.
Grunow, M, Günther, HO, Schleusener, M and Yilmaz, IO (2004) Operations planning for collect-and-place machines in PCB assembly. Computers & Industrial Engineering 47, 409429.
He, S, Wu, H and Saunders, JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation 13, 12721278.
Ho, W and Ji, P (2010) Integrated component scheduling models for chip shooter machines. International Journal of Production Economics 123, 3141.
Jensen, MT (2003) Generating robust and flexible job shop schedules using genetic algorithms. IEEE Transactions on Evolutionary Computation 7, 275288.
Jiang, J, Chen, X, Zang, M, Wang, Z and Tan, Z (2010 a) Optimization of the surface mount technology based on the max-min ant system. IEEE Future Computer and Communication (ICFCC), 2, 4547.
Jiang, J, Du, Z, Liu, C and Zhang, K (2010 b). Ant colony algorithms with characteristic of clustering for surface mount technology optimization. 6th Int. Conf. on Wireless Communications Networking and Mobile Computing (WiCOM), 1–4, Chengdu, China, September 23–25.
Jiang, J, Liu, C, Zhang, K, Wang, Z, Tan, Z and Chen, X (2010c) Program of route optimization for surface mount. 2nd International Workshop on Intelligent Systems and Applications (ISA), 1–4, Wuhan, China, May 22–23.
Kechadi, M, Low, KS and Goncalves, G (2013) Recurrent neural network approach for cyclic job shop scheduling problem. Journal of Manufacturing Systems 32, 689699.
Kim, KY, Chin, S, Kwon, O and Ellis, RD (2009) Ontology-based modeling and integration of morphological characteristics of assembly joints for network-based collaborative assembly design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 23, 7188.
Knuutila, T, Pyöttiälä, S and Nevalainen, OS (2007) Minimizing the number of pickups on a multi-head placement machine. The Journal of the Operational Research Society 58, 115121.
Kroll, E, Lenz, E and Wolberg, JR (1989) Rule-based generation of exploded-views and assembly sequences. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3, 143155.
Kumar, R and Li, H (1995) Integer programming approach to printed circuit board assembly time optimization. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 18, 720727.
Leipälä, T and Nevalainen, O (1989) Optimization of the movements of a component placement machine. European Journal of Operational Research 38, 167177.
Liang, JH and Lee, YH (2015) A modification artificial Bee colony algorithm for optimization problems. Mathematical Problems in Engineering 2015, 581391, 1–14.
Lin, WQ and Zhu, GY (2008) A genetic optimization approach to optimize the multi-head surface mount placement machine. Lecture Notes in Computer Science 5315, 10031012.
Liu, B, Wang, L, Jin, YH, Tang, F and Huang, DX (2005) Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals 25, 12611271.
Loh, TS, Bukkapatnam, ST, Medeiros, D and Kwon, H (2001) A genetic algorithm for sequential part assignment for PCB assembly. Computers & Industrial Engineering 40, 293307.
Luo, J, Li, X, Liu, H and Hu, Y (2010) Mathematical model for the optimization problem in SMT line. Proc. of the 29th Chinese Control Conf., 1822–1825, Beijing, China, July 29–31.
Neammanee, P and Reodecha, M (2009) A memetic algorithm-based heuristic for a scheduling problem in printed circuit board assembly. Computers & Industrial Engineering 56, 294305.
Nian, X, Wang, Z and Qian, F (2013) A hybrid algorithm based on differential evolution and group search optimization and Its application on ethylene cracking furnace. Chinese Journal of Chemical Engineering 21, 537543.
Park, JB, Lee, KS, Shin, JR and Lee, KY (2005) A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Transactions on Power Systems 20, 3442.
Peysakhov, M and Regli, W (2003) Using assembly representations to enable evolutionary design of Lego structures. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17, 155168.
Smed, J, Johnsson, M, Puranen, M, Leipala, T and Nevalainen, O (1999) Job grouping in surface mounted component printing. Robotics and Computer-Integrated Manufacturing 15, 3949.
Snyder, LV and Daskin, MS (2006) A random-key genetic algorithm for the generalized traveling salesman problem. European Journal of Operational Research 174, 3853.
Sun, DS, Lee, TE and Kim, KH (2005) Component allocation and feeder arrangement for a dual-gantry multi-head surface mounting placement tool. International Journal of Production Economics 95, 245264.
Wang, JF, Liu, JH, Li, SQ and Zhong, YF (2003) Intelligent selective disassembly using the ant colony algorithm. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17, 325333.
Yan, X and Shi, H (2011) A hybrid algorithm based on particle swarm optimization and group search optimization 2011 Seventh Int. Conf. on Natural Computation (ICNC) 1, 1317, Shanghai, China, July 26–28.
Zeng, K, Tan, Z, Dong, MC and Yang, P (2014) Probability increment based swarm optimization for combinatorial optimization with application to printed circuit board assembly. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 28, 429437.
Zhang, G, Li, Z and Du, X (2010) A hybrid genetic algorithm to optimize the printed circuit board assembly process. 2010 Int. Conf. on IEEE Logistics Systems and Intelligent Management 1, 563567, Harbin, China, January 9–10.
Zhu, GY and Zhang, WB (2014) An improved Shuffled Frog-leaping Algorithm to optimize component pick-and-place sequencing optimization problem. Expert Systems with Applications 41, 68186829.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed