Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T18:04:41.186Z Has data issue: false hasContentIssue false

Types of Flow on Swept Wings With Special Reference to Free Boundaries and Vortex Sheets

With Special Reference to Free Boundaries and Vortex Sheets

Published online by Cambridge University Press:  28 July 2016

D. Küchemann*
Affiliation:
Royal Aircraft Establishment

Summary

This is a discussion of the various types of flow which may occur on thin swept wings when the air stream is not attached to the wing surface everywhere. In particular, the behaviour of vortex sheets which arise from such mixed flows is examined.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jones, B. M. (1934). Stalling. Journal of the Royal Aeronautical Society, Vol. 38, p. 753, 1934.Google Scholar
2. Betz, A. (1950). Wie entsteht ein Wirbel in einer wenig zähen Fliissigkeit? Naturwissenschaften, Vol. 37, 1950.Google Scholar
3. McCullough, G. B. and Gault, D. E. (1951). Examples of three representative types of air-section stall at low speed. N.A.C.A. Technical Note No. 2502, 1951.Google Scholar
4. Multhopp, H. (1948). On the maximum lift coefficient of aerofoil sections. A.R.C. 12,115, 1948.Google Scholar
5. Küchemann, D. and Weber, J. (1953). Aerodynamics of Propulsion. McGraw Hill, New York and London, 1953.Google Scholar
6. Relf, E. F. (1952). Note on the drag of thin aerofoils. A.R.C. 15,582, 1952.Google Scholar
7. Küchemann, D. and Kettle, D. J. (1952). The effect of endplates on swept wings. A.R.C. Current Papers 104, 1952.Google Scholar
8. Küchemann, D., Weber, J. and Brebner, G. G. Lowspeed tests on wings of 45° sweep. To be published by A.R.C. as R. & M.Google Scholar
9. Orlik-Rückemann (1949). Experimental determination of pressure distributions and transition lines of plane delta wings at low speeds and zero yaw. Swedish Tech. Note KTH-Aero No. 3, 1949.Google Scholar
10. Berndt, S. B. (1949). Three component measurement and flow investigation of plane delta wings at low speeds and zero yaw. Swedish Tech. Note KTH-Aero No. 4, 1949.Google Scholar
11. Küchemann, D. (1953). The distribution of lift over the surface of swept wings. The Aeronautical Quarterly, Vol. IV, p. 261, August 1953.CrossRefGoogle Scholar
12. Jordan, P. (1939). Auftriebsberechnung und Strömungsvorgange beim überschreiten des Maximalauftriebes. Luftfahrtforschung, Vol. 16, p. 184, 1939.Google Scholar
13. Fage, A. and Simmons, L. F. G. (1925). An investigation of the airflow pattern in the wake of an aerofoil of finite span. A.R.C. R. & M. No. 951, 1925.Google Scholar
14. Abbot, J. H. and Sherman, A. (1938). Flow observations with tufts and lampblack of the stalling of four typical airfoil sections in the N.A.C.A. variable density tunnel. N.A.C.A. Tech. Note No. 672, 1938.Google Scholar
15. Black, J. (1952). A note on the vortex patterns in the boundary layer flow of a swept-back wing. Journal of the Royal Aeronautical Society, Vol. 56, p. 221, April 1952.Google Scholar
16. Werlé, H. (1953). Visualisation en tunnel hydrodynamique. La Recherche Aeronautique, No. 33, 1953.Google Scholar