Skip to main content Accessibility help

Smooth adaptive fixed time convergent controller design for BTT missiles with uncertainties

  • Y. Yun (a1), S. Tang (a1), J. Guo (a1) and Y. Yun (a2)


A smooth adaptive sliding-mode-based controller is developed for BTT missiles considering nonlinear couplings and aerodynamic uncertainties, wherein fixed-time stability theory is synthesised into sliding-mode control algorithm, such that control variables follow the desired command within fixed-bounded convergence time. Unlike other terminal sliding-mode-related works, the bound of settling time is independent of initial states, indicating that performance metrics, for instance the convergence rate, can be evaluated in advance. The control input is designed to be intrinsically smooth, based on adaptive estimations, and therefore the problem of singularity and chattering is effectively eliminated. Simulation results demonstrate the satisfactory performance and validate the effectiveness of the designed approach.


Corresponding author


Hide All
1. McGehee, R.M. and Emmert, R.I. Bank-to-turn (BTT) autopilot technology, National Aerospace and Electronics Conference, 1978, 2, pp 688696.
2. Arrow, A. and Williams, D. Comparison of classical and modern autopilot design and analysis techniques for a tactical air-to-air bank-to-turn missile, Guidance, Navigation and Control Conference, 1987, 87, (2581), pp 13601371. doi: 10.2514/6.1987-2581.
3. Crater, L.H. and Shamma, J.S. Gain-scheduled bank-to-turn autopilot design using linear parameter varying transformations, Journal of Guidance, Control, and Dynamics, 1996, 19, (5), pp 10561063. doi: 10.2514/3.21745.
4. Lin, C.F. and Yueh, W.R. Coordinated bank-to-turn autopilot design, American Control Conference, IEEE, 1985, pp 922926. doi: 10.23919/ACC.1985.4788750.
5. Kovach, M., Stevens, T.R. and Arrow, A. A bank-to-turn autopilot design for an advanced air-to-air interceptor, Guidance, Navigation and Control Conference, 2013, 87, (2579), pp 13461353. doi: 10.2514/6.1987-2579
6. Sun, B.C. and Qi, Z.K. Study of pole placement method for state feedback constrained autopilot design, Journal of System Simulation, 2006, 18, (Sup. 2), pp 892896. doi: 10.16182/j.cnki.joss.2006.s2.252.
7. Lin, C.K. and Wang, S.D. An adaptive H∞ controller design for bank-to-turn missiles using ridge Gaussian neural networks, IEEE Transactions on Neural Networks, 2004, 15, (6), pp 15071516. doi: 10.1109/TNN.2004.824418.
8. Kang, S., Jin Kim, H., Lee, J-I, Jun, B-E and Tahk, M-J. Roll-pitch-yaw integrated robust autopilot design for a high angle-of-attack missile, Journal of Guidance, Control, and Dynamics, 32, (5), pp 16221628. doi: 10.2514/1.39812.
9. Choi, Y.S., Lee, H.C. and Choi, J.W. Autopilot design for agile missile with aerodynamic fin and side thruster. SICE 2003 Annual Conference. IEEE, 2003, 2, pp 14761481.
10. Li, S. and Jun, Y. Robust autopilot design for bank-to-turn missiles using disturbance observers, IEEE Transactions on Aerospace and Electronic Systems, 2013, 49, (1), pp 558579. doi:10.1109/TAES.2013.6404120.
11. Zheng, W., Liu, G., Yang, J. and Du, T. An adaptive fuzzy variable structure controller for bank-to-turn missile, Journal of Computational Information Systems, 2011, 7, (2), pp 562569.
12. Xu, Y., Yu, J., Yuan, Y. and Gu, W. Adaptive fuzzy sliding-mode controller for BTT missile, Control, Automation, Robotics and Vision Conference, IEEE, 2004. 2, pp 12221226. doi:10.1109/ICARCV.2004.1469019.
13 Pisano, A. and Elio, U. Sliding mode control: a survey with applications in math, Mathematics and Computers in Simulation, 2011, 81, (5), pp 954979. doi: 10.1016/j.matcom.2010.10.003.
14. Kumar, S.R., Rao, S. and Ghose, D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints. Journal of Guidance, Control, and Dynamics, 2012, 35, (4), pp 12301246. doi: 10.2514/1.55242.
15. Zhou, D., Mu, C. and Xu, W. Adaptive sliding-mode guidance of a homing missile. Journal of Guidance, Control, and Dynamics, 1999, 22, (4), pp 589594. doi: 10.2514/2.4421.
16. Wang, Z., Li, S.H., and Fei, S.M. Finite-time tracking control of bank-to-turn missiles using terminal sliding mode, ICIC Express Letters, 2009, 3, (3), pp 16.
17. Chen, M., Wu, Q.X. and Cui, R.X. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems, ISA transactions, 2013, 52, (2), pp 198206. doi: 10.1016/j.isatra.2012.09.009.
18. Yu, S. and Long, X. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode, Automatica, 2015, 54, pp 158165. doi: 10.1016/j.automatica.2015.02.001.
19. Khoo, S., Xie, L., Zhao, S. and Man, Z. Multi-surface sliding control for fast finite-time leader-follower consensus with high order SISO uncertain nonlinear agents, International Journal of Robust and Nonlinear Control, 2014, 24, (16), pp 23882404. doi: 10.1002/rnc.2997.
20. Mobayen, S. Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties, Complexity, 2015, 21, (2), pp 239244. doi: 10.1002/cplx.21600.
21. Wang, X. and Wang, J. Partial integrated missile guidance and control with finite time convergence, Journal of Guidance, Control, and Dynamics, 2013, 36, (5), pp 13991409. doi: 10.2514/1.58983.
22. Kumar, S.R., Rao, S. and Ghose, D. Non-singular terminal sliding mode guidance and control with terminal angle constraints for non-maneuvering targets, 2012 12th International Workshop on Variable Structure Systems, 2012, pp 291296. doi: 10.1109/VSS.2012.6163517.
23. Zhao, L.W. and Hua, C.C. Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM, Nonlinear dynamics, 2014, 75, (1–2), pp 311318. doi: 10.1007/s11071-013-1067-5.
24. Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 2012, 57, (8), pp 21062110. doi: 10.1109/tac.2011.2179869.
25. Zuo, Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 2015, 54, pp 305309. doi: 10.1016/j.automatica.2015.01.021.
26. Zuo, Z. Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory & Applications, 2014, 9, (4), pp 545552. doi: 10.1049/iet-cta.2014.0202.
27. Jiang, B., Hu, Q. and Friswell, M.I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Transactions on Control Systems Technology, 2016, 24, (5), pp 18921898. doi: 10.1109/TCST.2016.2519838.
28. Fu, J. and Wang, J. Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Systems & Control Letters, 2016, 93, pp 112. doi: 10.1016/j.sysconle.2016.03.006.
29. Awad, A. and Wang, H. Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control. Chinese Journal of Aeronautics, 2016, 29, (5), pp 13021312. doi: 10.1016/j.cja.2016.04.020.
30. Wang, F., Zong, Q., Dong, Q. and Tian, B. Disturbance observer-based sliding mode backstepping control for a re-entry vehicle with input constraint and external disturbance. Transactions of the Institute of Measurement and Control, 2016, 38, (2), pp 165181. doi: 10.1177/0142331215572417.
31. Zhou, D., Sun, S. and Teo, K.L. Guidance laws with finite time convergence. Journal of Guidance, Control, and Dynamics, 2009, 32, (6), pp 18381846. doi: 10.2514/1.42976.
32. Cruz-Zavala, E., Moreno, J.A. and Fridman, L. Uniform sliding mode controllers and uniform sliding surfaces. IMA Journal of Mathematical Control and Information, 2012, 29, (4), pp 491505. doi: 10.1109/CDC.2011.6160493.


Related content

Powered by UNSILO

Smooth adaptive fixed time convergent controller design for BTT missiles with uncertainties

  • Y. Yun (a1), S. Tang (a1), J. Guo (a1) and Y. Yun (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.