Skip to main content Accessibility help

Parametric analysis of composite sinusoidal specimens under quasi-static crushing

  • H. L. Mou (a1), X. Su (a1), J. Xie (a1) and Z. Y. Feng (a1)


This paper aims to build the finite element model of the composite sinusoidal specimens and to carry out the parametric analysis. In this paper, the damage behaviour and the energy-absorbing results of composite sinusoidal specimens have been studied by quasi-static crushing experiments. The failure mechanisms of specimens under quasi-static crushing is further analysed. A numerical simulation has been performed by using the finite element model code LS-DYNA. The numerical results, in terms of load -displacement data, have been compared against experimental data, and good agreement has been found. Moreover, a sensitivity study has been carried out by varying material properties in order to assess their influence on the numerical results, and the material parameter selection scheme is optimised based on the constructed corresponding response surfaces. The results show that the response surface model has passed the test of goodness of fit, and the optimisation method can effectively assist the finite element modelling, and greatly decrease the numbers of trial and error.



Hide All
1.Damodar, R.A. and Marshall, R. Design and evaluation of composite fuselage panels subjected to combined loading conditions, J Aircr, 2005, 42, (4), pp 10371045. doi: 10.2514/1.18994.
2.Fasanella, E.L. and Jackson, K.E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank, U.S. Army Research Laboratory, Vehicle Technology Center, Langley Research Center, April 2000.
3.Zou, T.C., Mou, H.L. and Feng, Z.Y. Research on effects of oblique struts on crashworthiness of composite fuselage sections, J Aircr, 2012, 49, (6), pp 20592063. doi: 10.2514/1.C031867.
4.Feraboli, P., Wade, B., Deleo, F., Rassaian, M., Higgins, M. and Byar, A. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen, Composites: Part A, 2011, 42, (11), pp 18091825. doi: 10.1016/j.compositesa.2011.08.004.
5.Damodar, R.A. and Marshall, R. Design and evaluation of composite fuselage panels subjected to combined loading conditions, J Aircr, 2005, 42, (4), pp 10371045. doi: 10.2514/1.18994.
6.Feng, Z.Y., Mou, H.L., Zou, T.C. and Ren, J. Research on effects of composite skin on crashworthiness of composite fuselage section, Int J Crashworthiness, 2013, 18, (5), pp 459464. doi: 10.1080/13588265.2013.805291.
7.Heimbs, S., Hoffmann, M., Waimer, M., Schmeer, S. and Blaurock, J. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations, Int J Crashworthiness, 2013, 18, (4), pp 406422. doi: 10.1080/13588265.2013.801294.
8.Wiggenraad, J.F.M., Michielsen, A.L.P.J., Santoro, D., Lepage, F., Kindervater, C. and Beltran, F. Development of a crashworthy composite fuselage structure for a commuter aircraft, NLR-TP-99532, National Aerospace Laboratory NLR, 1999, pp 1-23.
9.Terry, J.E. Design and test of an improved crashworthiness small composite airplane, SAE Paper 2000-01-1673, Presented at the SAE General Aviation Technology Conference and Exposition, Wichita, KS, 2000, pp 1-18. doi: 10.4271/2000-01-1673.
10.Terry, J.E., Hooper, S.J. and Nicholson, M. Design and test of an improved crashworthiness small composite airplane, NASA/CR-2002-211774, NASA, Washington, DC, 2002, pp 1–228.
11.David, D., Didier, J., Michel, M. and Gérard, W. Evaluation of finite element modeling methodologies for the design of crashworthy composite commercial aircraft fuselage, 24th International Congress of the Aeronautical Sciences, 2004, pp 1-10.
12.Wiggenraad, J.F.M., Santoro, D., Lepage, F., Kindervater, C. and Mañez, H.C. Development of a crashworthy composite fuselage concept for a commuter aircraft, NLR-TP-2001-108, National Aerospace Laboratory NLR, 2001, pp 1-13.
13.Huang, J.C. and Wang, X.W. Numerical and experimental investigations on the axial crushing response of composite tubes, Composite Structures, 2009, 91, (2), pp 222228. doi: 10.1016/j.compstruct.2009.05.006.
14.Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Papapostolou, D.P. The static and dynamic axial collapse of CFRP square composite tubes: Finite element modeling, J Composite Structures, 2006, 74, (2), pp 213225. doi: 10.1016/j.compstruct.2005.04.006.
15.Palanivelu, S., Paepegem, W., Degrieck, J., Kakogiannis, D., Ackeren, J. and Hemelrijck, D. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modeling, Polymer Testing, 2010, 29, (6), pp 729741. doi: 10.1016/j.polymertesting.2010.05.010.
16.Xiao, X.R. Modeling energy absorption with a damage mechanics based composite material model, J Composite Materials, 2009, 43, (5), pp 427444. doi: 10.1177/0021998308097686.
17.Xiao, X.R., Botkin, M.E. and Johnson, N.L. Axial crush simulations of braided carbon tubes using MAT58 in LS-DYNA, Thin-Walled Structures, 2009, 47, (6-7), pp 22472259. doi: 10.1016/j.tws.2008.12.004.
18.Deleo, F., Wade, B., Feraboli, P. and Rassaian, M. Crashworthiness of composite structures: Experiment and simulation, Proceedings of the 50th AIAA Structures, Structural Dynamics and Materials Conference, 4–7 May 2009, Palm Springs, California, US.
19.Ilcewicz, L.B. and Brian, M. Safety & certification initiatives for composite airframe structure, 46th AIAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics & Materials Conference, 18-21 April 2005, Austin, Texas, US.
20.Jackson, K.E. and Fasanella, E.L. Development of a scale model composite fuselage concept for improved crashworthiness, J Aircr, 2001, 38, (1), pp 95103. doi: 10.2514/2.2739.
21.Jackson, K.E. and Fasanella, E.L. Crash simulation of vertical drop tests of two Boeing 737 fuselage sections, DOT/FAA/AR-02/62, US Department of Transportation, Federal Aviation Administration, 2002, pp 1-96.
22.Jackson, K.E. and Fasanella, E.L. Development and validation of a finite element simulation of a vertical drop test of an ATR 42 regional transport airplane, DOT/FAA/AR-08/19, US Department of Transportation, Federal Aviation Administration, 2008, pp 1-81.
23.Waimer, M., Kohlgruber, D., Hachenberg, D. and Voggenreiter, H. Experimental study of CFRP components subjected to dynamic crash loads, Composite Structures, 2013, 105, pp 288299. doi: 10.1016/j.compstruct.2013.05.030.
24.Mou, H.L., Zou, T.C., Feng, Z.Y. and Xie, J. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens, Latin American J Solids and Structures, 2016, 13, (6), pp 11871202. doi: 10.1590/1679-78252446.
25.Feraboli, P. Development of a corrugated test specimen for composite materials energy absorption, J Composite Materials, 2008, 42, (3), pp 229256. doi: 10.1177/0021998307086202.
26.Farley, G.L. and Jones, R.M. Crushing characteristics of continuous fiber-reinforced composite tubes, J Composite Materials, 1992, 26, (1), pp 3750. doi: 10.1177/002199839202600103.
27.Livermore Software Technology Corporation, LS-DYNA keyword user's manual, Version 971, 2006, Livermore, US.
28.Han, H.P., Taheri, F., Pegg, N. and Lu, Y. A numerical study on the axial crushing response of hybrid pultruded and ±45° braided tubes, Composite Structures, 2007, 80, (2), pp 253264. doi: 10.1016/j.compstruct.2006.05.012.
29.Bonnie, W., Paolo, F., Morgan, O. and Mostafa, R. Simulating laminated composite materials using LS-DYNA material model MAT54: Single-element investigation, DOT/FAA/TC-14/19, US Department of Transportation, Federal Aviation Administration, 2015, pp 1-63.
30.Deepak, S. Crashworthy design and analysis of aircraft structures, A Thesis Submitted to the Faculty of Drexel University. Doctor of Philosophy, 2013.
31.Johnson, A., David, M., CMH-17 Crashworthiness wg: round robin simulation of crash elements, In: Proc. 56th Polymer Matrix Composite Materials Handbook Meeting. Federal Aviation Authority (FAA), CMH-17 crashworthiness forum, 19-22 July 2010, Costa Mesa, California, US.
32.Riccio, A., Saputo, S. and Sellitto, A. A user defined material model for the simulation of impact induced damage in composite, Key Engineering Materials, 2016, 713, pp 1417. doi: 10.4028/
33.Riccio, A., Saputo, S., Sellitto, A., Raimondo, A. and Ricchiuto, R. Numerical investigation of a stiffened panel subjected to low velocity impacts, Key Engineering Materials, 2015, 66, pp 277280. doi: 10.4028/
34.Pietropaoli, E. and Riccio, A. Formulation and assessment of an enhanced finite element procedure for the analysis of deamination growth phenomena in composite structures, Composite Science and Technology, 2011, 71, pp 836846. doi: 10.1016/j.compscitech.2011.01.026.
35.Carruthers, J., Kettle, A. and Robinson, A. Energy absorption capability and crashworthiness of composite material structures: A review, Applied Mechanics Reviews, 1998, 51, pp 635649. doi: 10.1115/1.3100758.
36.Johnson, A. and Kohlgruber, D. Design and performance of energy absorbing subfloor structures in aerospace applications, IMechE Seminar S672, Materials and Structures for Energy Absorption, London, England, May 2000.
37.Mc Carthy, M. and Wiggenraad, J. Numerical investigation of a crash test of a composite helicopter subfloor structure, Composite Structures, 2001, 51, pp 345359. doi: 10.1016/S0263-8223(00)00150-1.
38.Vicente, J.L.S., Beltrán, F. and Martínez, F. Simulation of impact on composite fuselage structures, European congress on computational methods in applied sciences and engineering ECCOMAS 2000; 11-14 September 2000, ECCOMAS, Barcelona, Spain; Regensburg, Germany.
39.Hanagud, S., Craig, I., Sriram, P. and Zhou, W. Energy absorption behaviour of graphite epoxy composite sine webs, J Composite Materials, 1989, 23, (5), pp 448459. doi: 10.1177/002199838902300502.
40.Jeryan, R. Energy management working group activities, Proceedings of the 48th MIL-HDBK-17 Coordination Meeting-Crashworthiness Working Group, March 2005, Charlotte, North Carolina, US.
41.Nailadi, C. A summary of the ACC tube testing program, Proceedings of the 49th MIL-HDBK-17 Coordination Meeting, December 2005, Santa Monica, California, US.
42.Jackson, A., Dutton, S., Gunnion, A. and Kelly, D. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing, Composite Structures, 2011, 93, pp 26462654. doi: 10.1016/j.compstruct.2011.04.032.
43.Fauzan, D., Shahrum, A., Ahmad, K.A. and Zulkifli, M.N. Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses, Latin American J Solids and Structures, 2015, 12, (6), pp 11261143. doi: 10.1590/1679-78251638.
44.Ren, Y.R., Jiang, H.Y., Ji, W.Y., Zhang, H.Y., Xiang, J.W. and Yuan, F.G. Improvement of progressive damage model to predicting crashworthy composite corrugated plate, Applied Composite Materials, 2018, 25, (1), 4566. doi: 10.1007/s10443-017-9610-z.
45.Jiang, H.Y., Ren, Y.R., Gao, B.H. and Xiang, J.W. Numerical investigation on links between the stacking sequence and energy absorption characteristics of fabric and unidirectional composite sinusoidal plate, Composite Structures, 2017, 171, 382402. doi: 10.1016/j.compstruct.2017.03.047.
46.Bonnie, W. and Paolo, F. Crushing behavior of laminated composite structural elements: Experiment and LS-DYNA simulation, DOT/FAA/TC-15/25, US Department of Transportation, Federal Aviation Administration, 2016, pp 1-213.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed