Skip to main content Accessibility help

The near-field flow characteristics of some wall-mounted mixing tabs

  • S. C. M. Yu (a1), L. P. Chua (a1) and E. K. Goh (a2)


It is well known that passive vortex generators can be very effective in controlling separation by ‘re-energising’ the low momentum fluids at the boundary layers. They have been used extensively in many practical aerodynamic applications; both in external and internal flows. Typical examples include aerofoil stall alleviation and engine face distortion control in the jet aircraft intake during high angles of incidence. The general flow feature behind a vortex generator is that a pair of contra-rotating streamwise vortices would be formed which will significantly strengthen the flow at the boundary layers. However, the rationale for successful vortex generator designs is often poorly understood. In many cases, vortex generator designs have even been shown to be arbitrary. Anderson et al and Reichert and Wendt used rectangular fin and tapered fin vortex generators respectively, to eliminate the internal flow separation of S-shaped intake ducts. Both geometries were found to be equally effective. Weng and Guo successfully applied aerofoil shape type of vortex generators to suppress the swirl on the engine face of an S-shaped intake duct at high angles of incidence.



Hide All
1. Anderson, B.H., Huang, P.S., Paschal, W.A. and Cavatorta, E. A study on vortex flow control of inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics, AIAA Paper No 92-0152, 1992.
2. Reichert, B.A. and Wendt, B.J. Improving diffusing S-duct performance by secondary flow control, AIAA Paper No 94-0365, 1994.
3. Weng, P.F. and Guo, R.W. On swirl control in an S-shaped air intake at high angle of attack, AIAA Paper No 94-0366, 1994.
4. Reeder, M.F. and Samimy, M. The evolution of a jet with vortex-generating tabs: real time visualization and quantitative measurements, J Fluid Mech, 1997, 331, pp 73118.
5. Yu, S.C.M. and Hou, Y.X. Near field velocity measurements of a confined square jet with primary and secondary tabs, AIAA J, 1998, 36, (2), pp 288289.
6. Yu, S.C.M., Hou, Y.X. and Low, S.C. The flow characteristics of a confined square jet with mixing tabs, Proceedings of IMechE Part G, J Aero Eng, 1998, 212, pp 6376.
7. Zaman, K.B.M.Q., Reeder, M.F. and Samimy, M. Control of an axisymmetric jet using vortex generators, Phys Fluids, 1994, 6, (2), pp 778793.
8. Yu, S.C.M. and Goh, R.E.K. Flows in the vicinity of different passive mixing tabs: A LDA study, MINDEF-NTU joint Research Progress Report, 1998, Nanyang Technological University, Singapore.

Related content

Powered by UNSILO

The near-field flow characteristics of some wall-mounted mixing tabs

  • S. C. M. Yu (a1), L. P. Chua (a1) and E. K. Goh (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.