Skip to main content Accessibility help

Implicit large eddy simulation of ship airwakes

  • B. Thornber (a1), M. Starr (a2) and D. Drikakis (a2)


Implicit large eddy simulations (ILES) of two different Royal Navy ships have been conducted as part of the UK Ship/Air Interface Frame-work project using a recently developed very high order accuracy numerical method. Time-accurate CFD data for fourteen flow angles was produced to incorporate into flight simulators for definition of safe helicopter operating limits (SHOLs). This paper discusses the flow phenomenology for the different wind directions and where possible reports on the validation of the ILES results for mean and fluctuating velocity components and spectra against experimental data.



Hide All
1. Bogstad, M.C., Habashi, W.G., Akel, I. and Ait-Ali-Yahia, D.. Computational-fluid-dynamics based advanced ship-airwake database for helicopter flight simulators, J Aircr, 2002, 39, pp 830838.
2. Boris, J.P., Grinstein, F.F., Oran, E.S. and Kolbe, R.L.. New insights into large eddy simulation. Fluid Dyn Res, 1992, 10, pp 199228, doi:10.1016/0169-5983(92)90023-P.
3. Castro, I.P. and Robins, A.G.. The flow around a surface-mounted cube in uniform and turbulent streams, J Fluid Mech, 1977, 77, pp 307335. doi:10.1017/S0022112077000172.
4. Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, Y., Zhou, A.A., Porter, D.H. and Woodward, P.R.. Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation, Phys Fluids, 2002, 14, (10), pp 36923709.
5. Cox, I., Turner, G., Finlay, B. and Duncan, J., The ship/air interface framework (SAIF) project: Dynamic challenges. In Maritime Operations of Rotorcraft, 11-12 June 2008.
6. Czerwiec, R.M. and Polsky, S.A., LHA airwake wind tunnel and CFD comparison with and without bow flap. AIAA 2004-4832, 2004.
7. Dalziel, S.B., Linden, P.F. and Youngs, D.L.. Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability. J Fluid Mech, 1999, 399, pp 148.
8. Drikakis, D.. Advances in turbulent flow computations using high-resolution methods, Prog Aerosp Sci, 2003, 39, pp 405424. doi:10.1016/S0376-0421(03)00075-7.
9. Drikakis, D., Fureby, F., Grinstein, F., Hahn, M. and Youngs, D.. Miles of transition to turbulence in the Taylor-Green vortex system. In ERCOFTAC workshop on direct and large eddy simulation-6, p 133, September 2006.
10. Drikakis, M.D., Hahn, A.Mosedale and Thornber, B.. Large eddy simulation using high-resolution and high-order methods, Phil Trans R Soc A, 2009, 367, 1899, pp 29852997. doi:10.1098/rsta.2008.0312.
11. Drikakis, D. and Rider, W., High-Resolution Methods for Incompressible and Low-Speed Flows, SpringerVerlag, Cambridge, UK, 2004.
12. Forrest, J.S., Owen, I., Padfield, G.D. and Hodge, S.J.. Detached-eddy simulation of ship airwakes for piloted helicopter flight simulation. In Proceedings of the International Aerospace CFD Conference, 18-19 June 2007.
13. Fureby, C. and Grinstein, F.F.. Large eddy simulation of high-Reynolds-number free and wall-boundedflows, J Comput Phys, 2002, 181, pp 6897. doi:10.1006/jcph.2002.7119.
14. Fureby, C., Tabor, F., Weller, H.G. and Gosman, A.D.. A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys Fluids, 1997, 9, (5), pp 14161429.
15. Godunov, S.K.. A finite-difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat Sb, 1959, 47, pp 271295.
16. Gordnier, R.E. and Visbal, M.R.. Compact difference scheme applied to simulation of low-sweep delta wing flow. AIAA J, 2005, 43, (8), pp 17441752.
17. Grinstein, F.F. and Fureby, C.. Recent progress on MILES for high Reynolds number flows, J Fluid Eng, 2002, – T. Asme, 848:848861. doi:10.1115/1.1516576.
18. Grinstein, F.F., Margolin, L.G. and Rider, W.J. (Ed) Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2007.
19. Guillot, M.J. and Walker, M.A., Unsteady analysis of the air wake over the lpd-17, AIAA 2000-4125, 2000.
20. Hahn, M. and Drikakis, D.. Large eddy simulation of compressible turbulence using high-resolution methods, Int J Numer Meth Fl, 2005, 49, pp 971977. doi:10.1002/fld.882.
21. Hahn, M. and Drikakis, D.. Assessment of large-eddy simulation of internal separated flow. J Fluids Engineering, 2009, 131, 071201–071215.
22. Hahn, M. and Drikakis, D.. Implicit large-eddy simulation of swept wing flow using high-resolution methods, Int J Numer Meth Fl, 2009, 47, pp 618629.
23. Hickel, S., Adams, N.A. and Domaradzki, J.A.. An adaptive local deconvolution method for implict LES, J Comput Phys, 2006, 213, pp 413436. doi:10.1016/
24. Jeong, J. and Hussain, F.. On the identification of a vortex, J Fluid Mech, 1995, 285, pp 6994.
25. Jordan, S.A.. A large-eddy simulation methodology in generalized curvilinear coordinates, J Comput Phys, 1999, 148, (2), pp 322340.
26. Kim, K.H. and Kim, C.. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows part II: Multidimensional limiting process, J Comput Phys, 2005, 208, pp 570615. doi:10.1016/
27. Kolmogorov, A.N.. The local structure of turbulence in an incompressible fluid at very high Reynolds numbers, Dokl Akad Nauk SSSR, 1941, 30, p 299.
28. Krajnovic, S.. Large eddy simulation of flows around ground vehicles and other bluff bodies. Philos T R Soc A, 2009, 367, pp 29172930, doi: 10.1098/rsta.2009.0021.
29. Lesieur, M. and Metais, O.. New trends in large-eddy simulations of turbulence, Annu Rev Fluid Mech, 1996, 28, pp 4582.
30. Margolin, L.G., Smolarkiewicz, P.K. and Sorbjan, Z.. Large-eddy simulations of convective boundary layers using nonoscillatory differencing. Physica D, 1999, 133, pp 390397. doi:10.1016/S0167-2789(99)00083-4.
31. Margolin, L.G., Smolarkiewicz, P.K. and Wyszogrodzki, A.A.. Implicit turbulence modelling for high Reynolds number flows, J Fluids Eng, 2002, 124, pp 862867. doi:10.1063/1.1522379.
32. Martinuzzi, R. and Tropea, C.. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow, J Fluids Eng, 1993, 115, (1), pp 8592.
33. Mosedale, A. and Drikakis, D.. Assessment of very high-order of accuracy in les models, J Fluids Eng, 2007, 129, (1), pp 4971503.
34. Polsky, S.A., A computational study of unsteady ship airwake. AIAA 2002-1022, 2002.
35. Polsky, S.A., CFD predication of airwake flowfields for ships experiencing beam winds. AIAA 2003-3657, 2003.
36. Pope, S.B., Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
37. Porter, D.H., Woodward, P.R. and Pouquet, A.. Inertial range structures in decaying compressible turbulent flows, Phys Fluids, 1998, 10, (1), pp 237245.
38. Qinetiq, Private Communication, 2007.
39. Reddy, K.R., Toffoletto, R. and Jones, K.R.W.. Numerical simulation of ship airwake, Comput Fluids, 2000, 29, pp 451465.
40. Roper, D.M., Owen, I., Padfield, G.D. and Hodge, S.J.. Integrating CFD and piloted simulation toquantify ship-helicopter operating limits, Aeronaut J, 2006, 110, (1109), pp 419428.
41. Saathoff, P.J. and Melbourne, W.H.. Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble, J Fluid Mech, 1997, 337, pp 124.
42. Sagaut, P., Large Eddy Simulation for Incompressible Flows, Springer Verlag, 2001.
43. Sedighi, K. and Farhad, M.. Three-dimensional study of vortical structure around a cubic bluff body in a channel, Facta Universitatis, 2006, 4, (1), pp 116.
44. Sezer-Uzol, N., Sharma, A. and Long, L.N.. Computational fluid dynamics simulations of ship airwake, J Aerospace Eng, 2005, 219(G), pp 369392.
45. Sharma, A. and Long, L.N., Airwake simulations on an LPD 17 ship, AIAA 2001-2589, 2001.
46. Shipman, J., Arunajatesan, S., Menchini, C. and Sinha, N., Ship airwake sensitivities to modeling parameters, AIAA 2005-1105, 2005.
47. Smolarkiewicz, P.K. and Margolin, L.G.. Mpdata: a finite difference solver for geophysical flows, J Comput Phys, 1998, 140, (2), pp 459480. doi:10.1006/jcph.1998.5901.
48. Spiteri, R.J. and Ruuth, S.J.. A class of optimal high-order strong-stability preserving time discretization methods, SIAM J Num Anal, 2002, 40, (2), pp 469491. doi = 10.1137/S0036142901389025.
49. Syms, G.F.. Numerical simulation of frigate airwakes, Int J Numer Meth Fluids, 2004, 18, (2), pp 199207. doi: 10.1080/10618560310001634159.
50. Tai, T.C.. Simulation and analysis of LHD ship airwake by Navier Stokes method. In Proceedings of the NATO RTO Symposium on Fluid Dynamics Problems of Vehicles Operating near or in the Air-Sea Interface, 5-8 October 1998.
51. Thornber, B. and Drikakis, D.. Implicit large eddy simulation of a deep cavity using high resolution methods. AIAA J, 2008. doi:10.2514/1.36856.
52. Thornber, B., Drikakis, D., Williams, R. and Youngs, D.. On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes, J Comput Phys, 2008, 227, pp 48534872. doi:10.1016/
53. Thornber, B., Drikakis, D., Youngs, D. and Williams, R.J.R.. The influence of initial conditions on turbulent mixing due to richtmyer-meshkov instability, J Fluid Mech, 2010, 654, pp 99139. doi:10.1017/S0022112010000492.
54. Thornber, B., Mosedale, A. and Drikakis, D.. On the implicit large eddy simulation of homogeneous decaying turbulence, J Comput Phys, 2007, 226, pp 19021929. doi:10.1016/
55. Thornber, B., Mosedale, A., Drikakis, D., Youngs, D. and Williams, R.. An improved reconstruction method for compressible flows with low Mach number features, J Comput Phys, 2008, 227, pp 48734894. doi:10.1016/
56. Tissera, S., Titarev, V. and Drikakis, D., Chemically reacting flows around a double-cone, including ablation effects. AIAA-2010-1285, page 48th AIAA Aerospace Sciences Meeting and Exhibit, 2010.
57. Toro, E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Cambridge, UK, 1997.
58. Van Leer, B.. Towards the ultimate conservative difference scheme.IV. A new approach to numerical convection. J Comput Phys, 1977, 23, pp 276299, doi:10.1016/0021-9991(77)90094-8.
59. Volpe, G.. Performance of compressible flow codes at low Mach number, AIAA J, 1993, 31, pp 4956.
60. cYOUNGS, D.L.. Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys Fluids A, 1991, 3, (5), pp 13121320.
61. Youngs, D.L., Application of MILES to Rayleigh-Taylor and Richtmyer-Meshkov mixing. AIAA-2003-4102, June 2003.
62. Youngs, D.L. and Williams, R.J.R.. Turbulent mixing in spherical implosions. accepted, Int J Numer Meth Fl, 2007, USA.
63. Zan, S.. Technical comment on ‘computational-fluid-dynamics based advanced ship-airwake database for helicopter flight simulators’, J Aircr, 2003, 40, (5), p 1007.
64. Zhang, F., Xu, H. and Ball, N.G., Numerical simulation of unsteady flow over SFS 2 ship model. AIAA 2009-81, 2009.

Related content

Powered by UNSILO

Implicit large eddy simulation of ship airwakes

  • B. Thornber (a1), M. Starr (a2) and D. Drikakis (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.