Skip to main content Accessibility help
×
Home

An integrated design methodology for the deployment of constellations of small satellites

  • N. H. Crisp (a1), K. L. Smith (a1) and P. M. Hollingsworth (a1)

Abstract

A growing interest in constellations of small satellites has recently emerged due to the increasing capability of these platforms and their reduced time and cost of development. However, in the absence of dedicated launch services for these systems, alternative methods for the deployment of these constellations must be considered which can take advantage of the availability of secondary-payload launch opportunities. Furthermore, a means of exploring the effects and tradeoffs in corresponding system architectures is required. This paper presents a methodology to integrate the deployment of constellations of small satellites into the wider design process for these systems. Using a method of design-space exploration, enhanced understanding of the tradespace is supported , whilst identification of system designs for development is enabled by the application of an optimisation process. To demonstrate the method, a simplified analysis framework and a multiobjective genetic algorithm are implemented for three mission case-studies with differing application. The first two cases, modelled on existing constellations, indicate the benefits of design-space exploration, and possible savings which could be made in cost, system mass, or deployment time. The third case, based on a proposed Earth observation nanosatellite constellation, focuses on deployment following launch using a secondary-payload opportunity and demonstrates the breadth of feasible solutions which may not be considered if only point-designs are generated by a priori analysis. These results indicate that the presented method can support the development of future constellations of small satellites by improving the knowledge of different deployment strategies available during the early design phases and through enhanced exploration and identification of promising design alternatives.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An integrated design methodology for the deployment of constellations of small satellites
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An integrated design methodology for the deployment of constellations of small satellites
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An integrated design methodology for the deployment of constellations of small satellites
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

References

Hide All
1.Dyrud, L., Slagowski, S., Fentzke, J., Wiscombe, W., Gunter, B., Cahoy, K., Bust, G., Rogers, A., Erlandson, B., Paxton, L. and Arnold, S. Small-sat science constellations: Why and how, 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 2013.
2.Barnhart, D.J., Vladimirova, T., Baker, A.M. and Sweeting, M.N. A low-cost femtosatellite to enable distributed space missions, Acta Astronautica, 2009, 64, (11–12), pp. 11231143.
3.London III, J.R., Ray, M.E., Weeks, D.J. and Marley, A.B. The first US army satellite in fifty years: SMDC-ONE first flight results, 25th Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 2011.
4.Sandau, R., Brieß, K. and D’Errico, M. Small satellites for global coverage: Potential and limits, ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65, (6), pp 492504.
5.Saylor, W.W., Smaagard, K., Nordby, N. and Barnhart, D.J. New scientific capabilities enabled by autonomous constellations of smallsats, 21st Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 2007.
6.Bandyopadhyay, S., Foust, R., Subramanian, G.P., Chung, S.-J. and Hadaegh, F.Y. Review of formation flying and constellation missions using nanosatellites, Journal of Spacecraft and Rockets, 2016, 53, (3), pp 567578.
7.Wekerle, T., Pessoa Filho, J.B., Da Costa, L.E.V.L. and Trabasso, L.G. Status and trends of smallsats and their launch vehicles –– an up-to-date review, Journal of Aerospace Technology and Management, Aug 2017, 9, (3), pp 269286.
8.Sweeting, M.N. Modern small satellites – Changing the economics of space, Proceedings of IEEE, 106 (3), 2018, pp 343361.
9.Sorensen, T.C., Pilger, E.J., Wood, M.S., Nunes, M.A. and Yoneshige, L.K. Mission design and operations of a constellation of small satellites for remote sensing, Proc. SPIE 8739, Sensors and Systems for Space Applications VI, 873906, 2013.
10.Puig-Suari, J., Zohar, G. and Leveque, K. Deployment of cubeSat constellations utilizing current launch opportunities, 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 2013.
11.Li, A.S. and Mason, J. Optimal utility of satellite constellation separation with differential drag, In AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA. American Institute of Aeronautics and Astronautics (AIAA), 2014.
12.Bertino-Reibstein, A. and Wuerl, A. Development of a warm-gas butane system for microsatellite propulsion. 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 2013.
13.Fong, C.-J., Shiau, W.-T., Lin, C.-T., Kuo, T.-C., Chu, C.-H., Yang, S.-K., Yen, N.L., Chen, S.-S., Kuo, Y.-H., Liou, Y.-A. and Chi, S. Constellation deployment for the FORMOSAT-3/COSMIC mission. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, (11), pp 33673379.
14.King, J. and Beidleman, N. Method and apparatus for deploying a satellite network, 1993. URL www.google.co.uk/patents/US5199672.
15.Leppinen, H. Deploying a single-launch nanosatellite constellation to several orbital planes using drag maneuvers. Acta Astronautica, April 2016, 121, pp 2328.
16.Chase, J., Chow, N., Gralla, E. and Kasdin, N.J. LEO constellation design using the Lunar L1 Point, 14th AAS/AIAA Space Flight Mechanics Meeting, Maui, HI. American Astronautical Society (AAS), 2004.
17.Nadoushan, M.J. and Novinzadeh, A.B. Satellite constellation build-up via three-body dynamics, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228, (1), pp 155160.
18.Ward, C., Da Silva Curiel, A., Sweeting, M.N., Aglietti, G.S. and Schaffner, J. Surrey small satellite transfer vehicle, 56th International Astronautical Congress, Fukuoka, Japan. International Astronautical Federation (IAF), 2005.
19.Budianto, I.A. and Olds, J.R. Design and deployment of a satellite constellation using collaborative optimization, Journal of Spacecraft and Rockets, 2004, 41, (6), pp 956963.
20.Jilla, C.D. and Miller, D.W. Multi-objective, multidisciplinary design optimization methodology for distributed satellite systems, Journal of Spacecraft and Rockets, 2004, 41, (1), pp 3950.
21.Ross, A.M., Hastings, D.E., Warmkessel, J.M. and Diller, N.P. Multi-attribute tradespace exploration as front end for effective space system design, Journal of Spacecraft and Rockets, 2004, 41, (1), pp 2028.
22.Saunders, C., Bird, R., Da Silva Curiel, A., Sweeting, M.N. and Gomes, L. Design considerations in rapid-revisit small satellite constellations, 68th International Astronautical Congress, Adelaide, Australia. International Astronautical Federation (IAF), 2017.
23.Nag, S., Hughes, S.P. and Lemoigne, J. Navigating the deployment and downlink tradespace for earth imaging constellations, 68th International Astronautical Congress, Adelaide, Australia. International Astronautical Federation (IAF), 2017.
24.Le Moigne, J., Dabney, P., De Weck, O.L., Foreman, V., Grogan, P., Holland, M., Hughes, S. and Nag, S. Tradespace analysis tool for designing constellations (TAT-C), IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX. IEEE, July 2017.
25.Crisp, N.H. A Methodology for the Integrated Design of Small Satellite Constellation Deployment, PhD Thesis, The University of Manchester, 2016.
26.Ulybyshev, Y. General analysis method for discontinuous coverage satellite constellations, Journal of Guidance, Control, and Dynamics, Dec 2015, 38, (12), pp 24752483.
27.Razoumny, Y.N. Route satellite constellations for earth discontinuous coverage and optimal solution peculiarities, Journal of Spacecraft and Rockets, May-Jun 2017, 54, (3), pp 572581.
28.De Weck, O.L., De Neufville, R. and Chaize, M. Staged deployment of communications satellite constellations in low earth orbit, Journal of Aerospace Computing, Information, and Communication, 2004, 1, (3), pp 119136.
29.Collopy, P.D. and Hollingsworth, P.M. Value-driven design, Journal of Aircraft, 2011, 48, (3), pp 749759.
30.Vengadasalam, L., Desai, A., Hollingsworth, P.M. and Smith, K.L. Value-centric/driven design – application for the space industry, AIAA Space and Astronautics Forum and Exposition, Orlando, FL. American Institute of Aeronautics and Astronautics (AIAA), 2017.
31.Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 2002, 6, (2), pp 182197.
32.Mcgrath, C. and Macdonald, M. Design of a reconfigurable satellite constellation, 66th International Astronautical Congress, Jerusalem, Israel. International Astronautical Federation (IAF), 2015.
33.Crisp, N.H., Smith, K.L. and Hollingsworth, P.M. Launch and deployment of distributed small satellite systems. Acta Astronautica, 2015, 114, (September–October), pp 6578.
34.Chiasson, T.M. and Lozano, P.C. Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust, MSc Thesis, Massachusetts Institute of Technology, 2012.
35.Wertz, J.R. Orbit and Constellation design, Wertz, J.R. and Larson, W.J. (Eds), Space Mission Analysis and Design, chapter 7. Microcosm Press/Kluwer Academic Publishers, El Segundo, CA, 3rd ed, 1999.
36.Oltrogge, D.L. and Leveque, K. An evaluation of CubeSat orbital decay, 25th Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 2011.
37.Mccormick, D., Barrett, B. and Burnside-Clapp, M. Analyzing fractionated satellite architectures using RAFTIMATE: A Boeing tool for value-centric design, AIAA SPACE 2009 Conference & Exposition, Pasadena, CA. American Institute of Aeronautics and Astronautics (AIAA), 2009.
38.Eichenberg-Bicknell, E., Wisniewski, M.J., Choi, S.W. and Westley, D. M. Using a value-centric tool to optimize lifecycle cost, value and risk of spacecraft architectures, AIAA SPACE 2009 Conference & Exposition, Pasadena, CA. American Institute of Aeronautics and Astronautics (AIAA), 2009.
39.Golkar, A. and Lluch I Cruz, I. The federated satellite systems paradigm: Concept and business case evaluation, Acta Astronautica, Jun 2015, 111, pp 230248.
40.Lao, N., Mosher, T.J. and Neff, J. Small satellite cost model version 98 INTRO, User’s guide, The Aerospace Corporation, El Segundo, CA, 1998.
41.Patel, B.T., Schroll, S. and Lewin, A.W. On-orbit performance of the ORBCOMM spacecraft constellation, 13th Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 1999.
42.Isakowitz, S.J., Hopkins, J.B. and Hopkins, J.P. Jr. International Reference Guide to Space Launch Systemsz, The American Institute of Aeronautics and Astronautics (AIAA), Reston, VA, 4th ed, 2004. ISBN 978-1-56347-591-7.
43.Barnhart, D.J., Vladimirova, T. and Sweeting, M.N. Very-small-satellite design for distributed space missions, Journal of Spacecraft and Rockets, 2007, 44, (6), pp 12941306.
44.Hardy, Q. Orbcomm aims to corner low-orbit satellite market, Feb 1997. URL http://www.wsj.com/articles/SB855707661315821500.
45.Andrews, J. Constellation of distributed NanoSats for real time earth observation, 8th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany. DLR, 2011.
46.Boshuizen, C.R., Mason, J., Klupar, P. and Spanhake, S. Results from the Planet Labs Flock Constellation, 28th Annual AIAA/USU Conference on Small Satellites, Logan, UT. American Institute of Aeronautics and Astronautics (AIAA), 2014.

Keywords

Related content

Powered by UNSILO

An integrated design methodology for the deployment of constellations of small satellites

  • N. H. Crisp (a1), K. L. Smith (a1) and P. M. Hollingsworth (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.