Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-17T13:41:58.087Z Has data issue: false hasContentIssue false

Adaptive sliding mode attitude control of quaternion model for aircraft based on neural network minimum parameter learning method

Published online by Cambridge University Press:  05 July 2023

H.X. Zhuang*
Affiliation:
College of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

Abstract

This paper studied the back-stepping adaptive sliding mode control (SMC) attitude problem of quaternion aircraft model based on radial basis function (RBF) network approximation. Firstly, a sliding mode controller is designed based on the back-stepping method (BSM) for the nonlinear aircraft model. Secondly, a RBF network algorithm is designed to compensate for the unknown and uncertain parts of the aircraft system. RBF network has simple network structure and good generalisation ability, avoids lengthy and unnecessary calculations, realises adaptive approximation of unknown parts in the aircraft model, and through the adjustment of adaptive weights, the convergence and stability of the entire closed-loop system (CLS) are guaranteed. Finally, the anti-interference performance of the controller is verified by simulation of the actuator fault model. Our proposed method has all-right control performance indicated by the simulation results.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tian, B., Liu, L., Lu, H., Zuo, Z., Zong, Q. and Zhang, Y. Multivariable finite time attitude control for quadrotor UAV: theory and experimentation, IEEE Trans. Ind. Electron., 2017, 65, (3), pp 25672577.CrossRefGoogle Scholar
Ataei, M.M., Salarieh, H., Pishkenari, H.N. and Jalili, H. Boundary control design based on partial differential equation observer for vibration suppression and attitude control of flexible satellites with multi-section solar panels, J. Vibr. Control, 2021, 0, (0), pp 111.Google Scholar
Souza, A. and Souza, L. Comparison of the satellite attitude control system design using the H method and H/MIL. with pole allocation considering the parametric uncertainty WSEAS Trans. Circ. Syst., 2021, 20, pp 8895.CrossRefGoogle Scholar
Jie, G., Sheng, Y. and Liu, X. Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system, Chin. J. Aeronaut., 2014, 27, (4), pp 964976.Google Scholar
Xia, Y., Shi, P., Liu, G., Rees, D. and Han, J. Active disturbance rejection control for uncertain multivariable systems with time-delay, IET Control Theory Appl., 2007, 1, (1), pp 7581.CrossRefGoogle Scholar
Xia, Y., Zhu, Z. and Fu, M. Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory Appl., 2011, 5, (1), pp 93102.CrossRefGoogle Scholar
Zhuang, H., Sun, Q., Chen, Z. and Zeng, X. Active disturbance rejection control for attitude control of missile systems based on back-stepping method, Int. J. Control Automat. Syst., 2021, 19, (11), pp 36423656.CrossRefGoogle Scholar
Wang, Z., Zhao, J., Cai, Z., Wang, Y. and Liu, N. Onboard actuator model-based incremental nonlinear dynamic inversion for quadrotor attitude control: method and application, Chin. J. Aeronaut., 2021, 34, (11), pp 216227.CrossRefGoogle Scholar
Zhuang, H., Sun, Q., Chen, Z. and Zeng, X. Back-stepping active disturbance rejection control for attitude control of aircraft systems based on extended state observer, Int. J. Control Automat. Syst., 2021, 19, (6), pp 21342149.CrossRefGoogle Scholar
Zhuang, H., Sun, Q., Chen, Z. and Zeng, X. Robust adaptive sliding mode attitude control of aircraft systems based on back-stepping method, Aerosp. Sci. Technol., 2021, 118, pp 118.CrossRefGoogle Scholar
Park, J. and Sandberg, I. Universal approximation using radial basis function networks, Neural Computat., 2012, 3, (2), pp 246257.CrossRefGoogle Scholar
Pamadi, B.N. Performance, Stability, Dynamics, and Control of Airplane, 2nd Edition, Institute of Aeronautics and Astronautics, American, 2013.Google Scholar
Zhuang, H., Zhang, X., Sun, Q. and Chen, Z. Fuzzy adaptive sliding mode attitude control of quaternion model for aircraft based on back-stepping method, Data Driven Control and Learning Systems Conference, May, 2023, Xiangtan, China.CrossRefGoogle Scholar
Yuan, Z. and Qian, X. Control Flight Mechanics and Computer Simulation, Beijing, China: National Defense Industry Press, 2001.Google Scholar
Xia, Y., Lu, K., Zhu, Z. and Fu, M. Adaptive back-stepping sliding mode attitude control of missile systems. International Journal of Robust and Nonlinear Control, 2013, 23, (15), pp 16991717.CrossRefGoogle Scholar
Ioannou, P.A. and Sun, J. Robust Adaptive Control, 1st ed. PTR Prentice-Hall, 1995.Google Scholar
Guo, B. and Zhao, Z. Active Disturbance Rejection Control for Nonlinear Systems: An Introduction, John Wiley & Sons, Singapore Pte. Ltd, 2016.CrossRefGoogle Scholar
Buckholtz, K.R. Approach angle-based switching function for sliding mode control design, Proceedings of the American Control Conference Anchorage, 8-10 May, 2002, pp 23682373.CrossRefGoogle Scholar
Han, J. From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 2009, 56, (3), pp 900906.CrossRefGoogle Scholar
Liu, S. Flight Dynamics and Control of Modern Aircrafts, 1st edition, Shanghai Jiaotong University Press, Shanghai, China, 2014.Google Scholar
Chen, Z. and Huang, J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control, IEEE Trans. Automat. Control, 2009, 54, (3), pp 600605.CrossRefGoogle Scholar