Skip to main content Accessibility help
×
Home

Adaptive integrated guidance and control for impact angle constrained interception with actuator saturation

  • X. L. Ai (a1), Y. C. Shen (a2) and L. L. Wang (a3)

Abstract

This paper considers the integrated guidance and control (IGC) problem for impact angle constrained interception against manoeuvring targets with actuator saturation constraint. Based on the backstepping technique, an adaptive IGC law is presented to address this problem, where a fixed-time differentiator is proposed to estimate the derivatives of virtual control inputs to avoid the inherent problem of “explosion of complexity” suffered by the typical backstepping. Furthermore, an auxiliary first-order filter is introduced into the IGC law to cope with the actuator saturation constraint. The stability of the closed-loop system is strictly proved. Finally, the superiority of the proposed IGC law is verified by comparison simulations.

Copyright

Corresponding author

References

Hide All
1.Yan, H., Tan, S. and He, Y. A small-gain method for integrated guidance and control in terminal phase of re-entry. Acta Astronaut, 2017, 132, pp 282292.
2.Wang, X. and Wang, J. Partial integrated guidance and control with impact angle constraints. J Guidance Control Dyn, 2015, 38, (5), pp 925936.
3.Yang, C. and Yang, C. Analytical solution of three-dimensional realistic true proportional navigation. J Guidance Control Dyn, 2012, 19, (3), pp 569577.
4.Ohimeyer, E. Root-mean-square miss distance of proportional navigation missile against sinusoidal target. J Guidance Control Dyn, 2015, 19, (3), pp 563568.
5.Zhou, D., Mu, C. and Xu, W. Adaptive sliding-mode guidance for a homing missile. J Guidance Control Dyn, 1999, 22, (4), pp 589594.
6.Moon, J., Kim, K. and Kim, Y. Design of missile guidance law via variable structure control. J Guidance Control Dyn, 2001, 24, (4), pp 659664.
7.Lechevin, N. and Rabbath, C. Lyapunov-based nonlinear missile guidance. J Guidance Control Dyn, 2004, 27, (3), pp 10961102.
8.Shima, T. Intercept-angle guidance. J Guidance Control Dyn, 2011, 34, (2), pp 484492.
9.Kumar, S., Rao, S. and Ghose, D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints. J Guidance Control Dyn, 2012, 35, (4), pp 12301246.
10.Kumar, S., Rao, S. and Ghose, D. Non-singular terminal sliding mode guidance with impact angle constraints. J Guidance Control Dyn, 2014, 37, (4), pp 610621.
11.Zhang, Y., Tang, S. and Guo, J. Adaptive terminal angle constraint interception against manoeuvring targets with fast fixed-time convergence. Int J Robust Nonlinear Control, 2018, 28, pp 29963014.
12.Zhang, Y., Tang, S. and Guo, J. An adaptive fast fixed-time guidance law with an impact angle constraint for intercepting manoeuvring targets. Chinese J Aeronaut, 2018, 31, (6), pp 13271344.
13.Gurfil, P., Jodorkovskym, M. and Guelman, M. Finite time stability approach to proportional navigation systems analysis. J Guidance Control Dyn, 1998, 21, (6), pp 853861.
14.Chwa, D. and Choi, J. Adaptive nonlinear guidance law considering control loop dynamics. IEEE Trans Aerosp Electron Syst, 2003, 39, (40), pp 11341143.
15.Sun, S., Zhou, D. and Hou, W. A guidance law with finite time convergence accounting for autopilot lag. Aerosp Sci Technol, 2013, 25, (1), pp 132137.
16.He, S., Lin, D. and Wang, J. Robust terminal angle constraint guidance law with autopilot lag for intercepting manoeuvring targets. Nonlinear Dyn, 2015, 81, (1), pp 881892.
17.Zhou, D., Qu, P. and Sun, S. A guidance law with terminal impact angle constraint accounting for missile autopilot. J Dyn Syst Meas Control, 2013, 135, (5), pp 110.
18.Menon, P. and Ohlmeye, R.E. Integrated design of agile missile guidance and autopilot systems. Control Eng Practice, 2001, 9, (10), pp 10951106.
19.Vaddo, S., Menon, P. and Ohlmeye, R.E. Numerical state-dependent Raccati equation approach for missile integrated guidance control. J Guidance Control Dyn, 2009, 32, (2), pp 699703.
20.Xin, M., Balakrishnan, S. and Ohlmeyer, E. Integrated guidance and control missiles with θ - $\theta -D$ method. IEEE Trans Control Syst Technol, 2006, 14, (6), pp 981992.
21.Padhi, R., Chawla, C. and Das, P. Partial integrated guidance and control of interceptors for high-speed ballistic targets. J Guidance Control Dyn, 2014, 37, (1), pp 149163.
22.Kim, J., Whang, I. and Kim, B. Finite horizon integrated guidance and control for terminal homing in vertical plane. J Guidance Control Dyn, 2016, 39, (5), pp 11041112.
23.He, S., Lin, D. and Wang, J. Continuous second-order sliding mode based impact angle guidance law. Aerosp Sci Technol, 2015, 41, pp 199208.
24.Shima, T., Idan, M. and Golan, O. Sliding-mode control for integrated missile autopilot guidance. J Guidance Control Dyn, 2006, 29, (2), pp 250260.
25.Idan, M., Shima, T. and Golan, O. Integrated sliding mode autopilot-guidance for dual-control missiles. J Guidance Control Dyn, 2007, 30, (4), pp 10811089.
26.Shin, H., Hwang, T., Tsopurdos, A., White, B. and Tahk, M. Integrated intercept missile guidance and control with terminal angle constraint. Proceedings of the 26th International Congress of the Aeronautical Sciences, 2008, IEEE, pp 18751884.
27.Yan, H., Wang, W., Yu, B. and Ji, H. Adaptive integrated guidance and control based on backstepping and input-to-state stability. Asian J Control, 2014, 16, (2), pp 602608.
28.Shen, Y., Yu, J., Luo, G., Ai, X. and Jia, Z. Observer-based adaptive sliding mode backstepping output-feedback DSC for spin-stabilised canard-controlled projectiles. Chinese J Aeronaut, 2017, 30, (3), pp 11151126.
29.Hou, M., Liang, X. and Duan, G. Adaptive block dynamic surface control for integrated missile guidance and autopilot. Chinese J Aeronaut, 2013, 26, (3), pp 741750.
30.Ran, M., Wang, Q., Hou, D. and Dong, C. Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control. Chinese J Aeronaut, 2014, 27, (3), pp 634642.
31.He, S., Song, T. and Lin, D. Impact angle constrained integrated guidance and control for manoeuvring target interception. J Guidance Control Dyn, 2017, 40, (10), pp 26522660.
32.Wang, X., Zheng, Y. and Lin, H. Integrated guidance and control law for cooperative attack of multiple missiles. Aerosp Sci Technol, 2015, 42, pp 111.
33.Wang, W., Xiong, S., Wang, S., Song, S. and Lai, C. Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure. Aerosp Sci Technol, 2016, 53, pp 169187.
34.He, S., Wang, W. and Wang, J. Three-dimensional multivariable integrated guidance and control design for maneuvering targets interception. J Franklin Inst, 2016, 353, pp 43304350.
35.He, S., Wang, W. and Wang, J. Adaptive backstepping impact angle control with autopilot dynamics and acceleration saturation consideration. Int J Robust Nonlinear Control, 2017, 27, pp 37773893.
36.Basin, M., Yu, P. and Shtessel, Y. Finite- and fixed-time differentiators utilising HOSM techniques. IET Control Theory Appl, 2017, 11, (8), pp 11441152.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed