Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T07:27:49.524Z Has data issue: false hasContentIssue false

Propulsive mechanisms in animal swimming and flying locomotion

Published online by Cambridge University Press:  04 July 2016

O. Bschorr*
Affiliation:
Messerschmitt — Bölkow — Blohm GmbH Munich, Federal Republic of Germany

Summary

The objective of this paper is a description of animal swimming and flying locomotion in terms of wave theory. In this context various oscillatory organs of locomotion, such as flagella, fins and wings, are interpreted as waveguides capable of transmitting mechanical transverse waves. Furthermore, the Poynting concept is used, according to which every type of wave transports not only energy but also momentum. Even with no detailed knowledge of the hydro- and aerodynamic flow fields it is possible to calculate the wave power, the propulsive force, and the propulsive efficiency with the means and methods of vibrational theory alone.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1988 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lighthill, J. Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia, 1975.Google Scholar
2. Hertel, H. Struktur, Form, Bewegung. Krauskopf-Verlag, Mainz, 1963.Google Scholar
3. Hertel, H. Entgegnung auf die Besprechung des Buches ‘Struktur, Form, Bewegung’, Z Flugwissenschaften, 1964, 12, 283284.Google Scholar
4. Hertel, H. Gekoppelte Biege- und Drehschwingungen als Antrieb, VDI-Z, Sept (II) 1967, 26.Google Scholar
5. Nachtigall, W. (Hrsg.). Instationäre Effekte an schwingen-den Tierflügeln. Akademie der Wissenschaften und der Literatur, Mainz, F. Steiner-Verlag, Wiesbaden, 1980.Google Scholar
6. Möllenstädt, W. Einige Grundzüge der instationären Aerodynamik harmonisch schwingender Tragflügel in inkom-pressibler, reibungsfreier Strömung. In Ref. 5.Google Scholar
7. Ellington, C. P. Vortices and Hovering Flight. In Ref. 5.Google Scholar
8. Bilo, D. Kinematical Peculiarities of the Downstroke of a House Sparrow's Wing Calling a Question to Applicability of Steady State Aerodynamics to the Flapping Flight to Small Passeriformes. In Ref. 5.Google Scholar
9. Nachtigall, W. Rasche Bewegungsänderung bei der Flügel-schwingung von Fliegen und ihre mögliche Bedeutung für instationäre Luftkrafterzeugung. In Ref. 5.Google Scholar
10. Elliott, J. S. A note on the Propulsive Systems of Fishes and Birds, with Possible Application to Manpowered Flight. Aeronaut J, Aug-Sept 1984, 88, (877), 296298.Google Scholar
11. Wach, P. et al. On the Theory of Acoustic Radiation Force and its Application in Ultrasonic Power Measurements. Acoustica, 1981, 49, (1), 5563.Google Scholar
12. Cremer, L. Koinzidenzeffekt. Akustische Zeitschrift 7, 1942, Seite81.Google Scholar
13. Wille, R. and Timme, A. Über das Verhalten von Wirbelstrassen. Jahrbuch der Schiffbautechnischen Gesellschaft. 1957, Band 51.Google Scholar
14. Herzog, K. Anatomie und Flugbiologie der Vögel. G. Fischer-Verlag, Stuttgart, 1968.Google Scholar
15. Peterson, R. et al. Die Vögel Europas. P. Parey-Verlag, Hamburg, 1985.Google Scholar
16. Rüppell, G. Vogelflug. Rowohlt-Verlag, Hamburg, 1980.Google Scholar
17. Bschorr, O. Controlling of Short-tethered Satellites. Acta Astronaut, 1980, 7, 567573.Google Scholar