Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T07:20:47.487Z Has data issue: false hasContentIssue false

Effects of blowing upon dynamic stability of blunt nosed re entry vehicles pitching in hypersonic flow

Published online by Cambridge University Press:  22 August 2023

M. Khalid*
Affiliation:
Department of Aerospace Engineering, King Abdul Aziz University, Jeddah, Saudi Arabia
K.A. Juhany
Affiliation:
Department of Aerospace Engineering, King Abdul Aziz University, Jeddah, Saudi Arabia
*
Corresponding author: M. Khalid; Email: mkholid@kau.edu.sa

Abstract

Blowing is often used to alleviate the intense heating rates on blunt noses of hypersonic vehicles. This flow efflux at the leading edge transforms the flow field in the blunt-nose regions with implications on the dynamic stability of the vehicles. As a demonstrative exercise, the flow fields past blunt-nosed and truncated-nosed conical bodies under blowing and no-blowing conditions were perturbed to obtain the unsteady effects using the shock expansion method to recover the unsteady pressure coefficient. Static and pitching moment derivatives were then duly obtained by integrating the differential of the unsteady pressure coefficient with respect to the pitch angle (α) or the pitch rate ($\dot \theta $) together with the moment arm with reference to the centre of gravity. The results obtained for blunt-nose and truncated conical bodies show a noticeable drop in dynamic stability. Even when the flow is transformed from a tangential blowing at the shoulder of the blunt-nosed vehicle shows some degradation in dynamic stability.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rie, H., Linkiewicz, E.A. and Bosworth, F.D., Hypersonic Dynamic Stability, Part III, Unsteady flow Field program, FDL-TDR-64-149; January 1967, Air Force Flight Dynamics Lab, Wright-Patterson Air Force Base, USA.Google Scholar
Shueler, C.J., Ward, L.K., and Hodapp, A.E. Jr., Techniques for Measurement of Dynamic Stability Derivatives in Ground Testing Facilities, AGARD 121, October, 1967.Google Scholar
Dynamic stability parameters, AGARD Conference Proceedings, AGARD CP-235.Google Scholar
Khalid, M. and Juhany, A.K. An expression for the dynamic stability of slender elliptic wings in hypersonic flow, Aeronaut. J., 2014. CrossRefGoogle Scholar
Khalid, M. and Juhany, A. Dynamic stability of wave riders, J. Aircraft Eng. Aerospace Technol., 2016. doi: 10.1108/AEAT-09-2015-0218.R2 Google Scholar
Nowak, J.R. Gasjet and tangent slot cooling film tests of a 12.5°. Cone at M = 6.7, NASA Technical Paper 27866, 1988.Google Scholar
Tissera, S., Drikakis, D. and Birch, T. Computational fluid dynamics methods for hypersonic flow around blunted-cone-cylinder-flare, J. Spacecraft Rockets, 2010, 47, (4), pp 563570.CrossRefGoogle Scholar
Panaras, A.G. and Drikakis, D. High-speed unsteady flows around spiked-blunt bodies, J. Fluid Mech., 2009, 632, pp 6996.CrossRefGoogle Scholar
Narayan, A., Suramanian, N., Kumar, R. and Singh, T. Control of aerodynamics drag and heating of nose cones through taper ratios, Progress Comput. Fluid Dyn. Int. J., 2020, 20, (2), pp 105123.CrossRefGoogle Scholar
Watanabe, Y. et al. Aerodynamic characteristics of breathing blunt nose configuration at hypersonic speeds, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231, (5), pp 840858.CrossRefGoogle Scholar
Vinokur, M. Conservation equations of Gas Dynamics in curvilinear coordinate system, J. Comput. Phys., 1974, 14, pp 105125.CrossRefGoogle Scholar
Beam, R. and Warming, R.F. An implicit finite difference algorithm for hyperbolic systems in conservation law form, J. Comput. Phys., 1976, 22, (1), pp 87110.CrossRefGoogle Scholar
Pulliam, T. and Chaussee, D.S., A diagonal form of an implicit approximate-factorization algorithm, J. Comput. Phys., 1981, 39, (2), pp 347363.CrossRefGoogle Scholar
Grundmann, R., Aerothermodynamik, Springer Verlag, 1, 2000.Google Scholar
Gordon, S. and McBride, B.J. Computer program for calculation of complex chemical equilibrium compositions and applications, Tech Rep, National Aeronautics and Space Administration, Office of Management, Sciatic and Technical Information Program, 1994.Google Scholar
Khalid, M. and Juhany, A.K., Heat alleviation studies on hypersonic vehicles, Aeronaut. J. Aero J., 2018, 122, (1257), pp 1673–1696.Google Scholar
Khalid, M. and Juhany, A.K. Innovative means of surface blowing towards heat alleviation for hypersonic flows, J. Aerospace Eng., 2019, 2019, p 18.Google Scholar
Garicano-Mena, J, Lani, A, Deconinck, H. An energy-dissipative remedy against carbuncle: Application to hypersonic flows around blunt bodies , Comput. Fluids, 2016, 133, pp 43–54.CrossRefGoogle Scholar
Ismail, F and Roe, P.L. Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 2009, 228, (15, 20), pp 5410--5436.CrossRefGoogle Scholar
Eggers, A.J. On the calculation of flow about objects travelling at high supersonic speeds, NACA TN 2811, 1952. Google Scholar
Khalid, M. and East, R.A. Stability derivatives of blunt cones at high Mach Numbers, Aeronaut. Q, 1979, 30, pp 559590.CrossRefGoogle Scholar
Khalid, M. and East, R.A. High mach number dynamic stability of pointed cones at angles of attack, AIAA J., 1980, 18, pp 1263–1284.CrossRefGoogle Scholar
Scott, C.J. A theoretical and experimental determination of the pitching derivatives of the pitching stability derivatives of cones in hypersonic flow, MSc Thesis, AASU Report No. 67, University of Southampton, UK.Google Scholar
Krasnov, N,V. Aerodynamics of Bodies of Revolution, Edited and Annotated by Dean N Morris, American Elsevier Publishing Company, 1970, New York.Google Scholar