Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T06:48:43.607Z Has data issue: false hasContentIssue false

Departure flight delay prediction due to ground delay program using Multilayer Perceptron with improved sparrow search algorithm

Published online by Cambridge University Press:  25 September 2023

X. Dong*
Affiliation:
State Key Laboratory of Air Traffic Management System, Nanjing University of Aeronautics and Astronautics, College of Civil Aviation, Nanjing, China
X. Zhu
Affiliation:
State Key Laboratory of Air Traffic Management System, Nanjing University of Aeronautics and Astronautics, College of Civil Aviation, Nanjing, China
J. Zhang
Affiliation:
State Key Laboratory of Air Traffic Management System, Nanjing University of Aeronautics and Astronautics, College of Civil Aviation, Nanjing, China
*
Corresponding author: X. Dong; Email: dongxiangning@nuaa.edu.cn

Abstract

The ground delay program (GDP) is a commonly used tool in air traffic management. Developing a departure flight delay prediction model based on GDP can aid airlines and control authorities in better flight planning and adjusting air traffic control strategies. A model that combines the improved sparrow search algorithm (ISSA) and Multilayer Perceptron (MLP) has been proposed to minimise prediction errors. The ISSA uses tent chaotic mapping, dynamic adaptive weights, and Levy flight strategy to enhance the algorithm’s accuracy for the sparrow search algorithm (SSA). The MLP model’s hyperparameters are optimised using the ISSA to improve the model’s prediction accuracy and generalisation performance. Experiments were performed using actual GDP-generated departure flight delay data and compared with other machine learning techniques and optimisation algorithms. The results of the experiments show that the mean absolute error (MAE) and root mean square error (RMSE) of the ISSA-MLP model are 16.8 and 24.2, respectively. These values are 5.61%, 6.3% and 1.8% higher in MAE and 4.4%, 5.1% and 2.5% higher in RMSE compared to SSA, particle swarm optimisation (PSO) and grey wolf optimisation (GWO). The ISSA-MLP model has been verified to have good predictive and practical value.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Grabbe, S., Sridhar, B. and Mukherjee, A. Clustering days and hours with similar airport traffic and weather conditions. J. Aerosp. Inf. Syst., 2014, 11, pp 751763.Google Scholar
Bao, J., Yang, Z. and Zeng, W. Graph to sequence learning with attention mechanism for network-wide multi-step-ahead flight delay prediction. Transp. Res. Part C Emerg Technol., 2021, 130, p 103323.CrossRefGoogle Scholar
Kuhn, K.D. Ground delay program planning: Delay, equity, and computational complexity. Transp. Res. Part C Emerg. Technol., 2013, 35, pp 193203.CrossRefGoogle Scholar
Mukherjee, A., Hansen, M. and Grabbe, S. Ground delay program planning under uncertainty in airport capacity. Transp. Plan. Technol., 2012, 35, pp 611628.CrossRefGoogle Scholar
Yan, C., Vaze, V. and Barnhart, C. Airline-driven ground delay programs: A benefits assessment. Transp. Res. Part C Emerg. Technol., 2018, 89, pp 268288.CrossRefGoogle Scholar
Jacquillat, A. Predictive and prescriptive analytics toward passenger-centric ground delay programs. Transp. Sci., 2022, 56, pp 265298.Google Scholar
Liu, J., Li, K. and Yin, M. Optimizing key parameters of ground delay program with uncertain airport capacity. J. Adv. Transp., 2017, 2017, pp 19.Google Scholar
Liu, Y., Hansen, M. and Zhang, D. Modeling ground delay program incidence using convective and local weather information. In 12th USA/Europe Air Traffic Management Research and Development Seminar 2017. Seattle, Washington, USA: The European Organisation for the Safety of Air Navigation (EUROCONTROL), 2020, pp 18.Google Scholar
Yang, Z., Chen, Y. and Hu, J. Departure delay prediction and analysis based on node sequence data of ground support services for transit flights. Transp. Res. Part C Emerg. Technol., 2023, 153, p 104217.CrossRefGoogle Scholar
Wang, Z., Liao, C. and Hang, X. Distribution prediction of strategic flight delays via machine learning methods. Sustainability, 2022, 14, p 15180.CrossRefGoogle Scholar
Smith, D.A. and Sherry, L. Decision support tool for predicting aircraft arrival rates from weather forecasts[C]. In 2008 Integrated Communications, Navigation and Surveillance Conference. Bethesda, MD, USA: IEEE, 2008, pp 112.CrossRefGoogle Scholar
Mangortey, E. A Dissertation Presented to The Academic Faculty. Atlanta, Georgia, USA: Georgia Institute of Technology, 2019.Google Scholar
Liu, Y., Liu, Y. and Hansen, M. Using machine learning to analyze air traffic management actions: Ground delay program case study. Transp. Res. Part E Logist. Transp. Rev., 2019, 131, pp 8095.CrossRefGoogle Scholar
Chen, Y., Xu, Y. and Hu, M. Demand and capacity balancing technology based on multi-agent reinforcement learning. In 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). San Antonio, TX, USA: Institute of Electrical and Electronics Engineers (IEEE), 2021, pp 19.CrossRefGoogle Scholar
Dong, X., Zhu, X. and Hu, M. A methodology for predicting ground delay program incidence through machine learning. Sustainability, 2023, 15, p 6883.Google Scholar
Yu, B., Guo, Z., Asian, S., et al. Flight delay prediction for commercial air transport: A deep learning approach. Transp. Res. Part E Logist. Transp. Rev., 2019, 125, pp 203221.CrossRefGoogle Scholar
Zoutendijk, M. and Mitici, M. Probabilistic flight delay predictions using machine learning and applications to the flight-to-gate assignment problem. Aerospace, 2021, 8, p 152.CrossRefGoogle Scholar
Esmaeilzadeh, E. and Mokhtarimousavi, S. Machine learning approach for flight departure delay prediction and analysis. Transp. Res. Rec. J. Transp. Res. Board, 2020, 2674, pp 145159.CrossRefGoogle Scholar
Mokhtarimousavi, S. and Mehrabi, A. Flight delay causality: Machine learning technique in conjunction with random parameter statistical analysis. Int. J. Transp. Sci. Technol., 2023, 12, pp 230244.CrossRefGoogle Scholar
Mangortey, E., Pinon-Fischer, O.J. and Puranik, T.G. Predicting the Occurrence of Weather And Volume Related Ground Delay Programs, AIAA Aviation 2019 Forum. Dallas, TX: American Institute of Aeronautics and Astronautics, 2019.Google Scholar
Xue, J. and Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng., 2020, 8, pp 2234.CrossRefGoogle Scholar
Jiang, L., Yang, L. and Huang, Y. COD optimization prediction model based on CAWOA-ELM in water ecological environment. J. Chem., 2021, 2021, pp 19.Google Scholar
Deepa, R. and Venkataraman, R. Enhancing whale optimization algorithm with levy flight for coverage optimization in wireless sensor networks. Comput. Electr. Eng., 2021, 94, p 107359.CrossRefGoogle Scholar
Zhou, G., Moayedi, H. and Bahiraei, M. Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Product., 2020, 254, p 120082.Google Scholar
Hashem Samadi, S., Ghobadian, B., Nosrati, M., et al. Investigation of factors affecting performance of a downdraft fixed bed Gasifier using optimized MLP neural networks approach. Fuel, 2023, 333, p 126249.CrossRefGoogle Scholar
Hazarika, B.B., Gupta, D., and Natarajan, N. Wavelet kernel least square twin support vector regression for wind speed prediction. Environ. Sci. Pollut. Res., 2022, 29, pp 8632086336.CrossRefGoogle ScholarPubMed
Chen, T. and Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA: ACM, 2016, pp 785794.Google Scholar
Fayed, H.A. and Atiya, A.F. Speed up grid_search for parameter selection of support vector machines. Appl. Soft Comput., 2019, 80, pp 202210.CrossRefGoogle Scholar
Zhang, X., Liu, S. and Yan, J. Fixed-time cooperative trajectory optimisation strategy for multiple hypersonic gliding vehicles based on neural network and ABC algorithm. Aeronaut. J., 2023, pp 115.Google Scholar
Lundberg, S.M. and Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA,USA: Curran Associates Inc., 2017, pp 49.Google Scholar