Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:58:50.295Z Has data issue: false hasContentIssue false

Surface and Ultra-Thin Film Characterization by Grazing-Incidence Asymmetric Bragg Diffraction

Published online by Cambridge University Press:  06 March 2019

T. C. Huang*
Affiliation:
IBM Research Division, Almaden Research Center 650 Harry Road, San Jose, CA 95120-6099
Get access

Abstract

An effective technique using grazing-incidence X-rays and asymmetric-Bragg diffraction (GIABD) for the characterization of crystalline phases on surfaces and structural depth-profiles in thin films is described. The application of the GIABD using both X-ray and synchrotron radiation sources for the analysis of an iron-oxide magnetic thin film previously reported to have an unexpected magnetically-dead layer is discussed. The X-ray diffraction analysis using the GIABD and the conventional θ-2θ scanning techniques detected an anti-ferromagnetic hexagonal α-Fe2O3 on the surface and a ferromagnetic tetragonal γ-Fe2O3 in the bulk of the film, respectively. The synchrotron diffraction analysis using incident angles below and above the critical angle of total reflection quantitatively determined the structural depth-profiles of α-Fe2O3 and γ-Fe2O3 in the film.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Felder, R. and Berry, B. S., J. Appl. Cryst. 3, 372 (1970).Google Scholar
2 Kiessig, H., Ann. Physik 10, 769 (1931).Google Scholar
3 Wainfan, N. and Parratt, L. G., J. Appl. Phys. 31, 1331 (1960); and references therein.Google Scholar
4 Segmüller, A., Thin Solid Films 18, 287 (1973).Google Scholar
5 Segmüller, A., Adv. X-Ray Anal. 29, 353 (1986); Thin Solid Films 154, 33 (1987).Google Scholar
6 Eisenberger, P. and Marra, W. C., Phys. Rev. Lett. 46, 1081 (1981).Google Scholar
7 Feidenhans’l, R., Surface Science Report 10, 105 (1989); and references therein.Google Scholar
8 Yoneda, Y. and Horiuchi, T., Sci. Instr. 42, 1069 (1971).Google Scholar
9 Wobrauschek, P. and Aiginger, H., Spectrochim. Acta, 835, 607 (1980).Google Scholar
10 Yap, C. T., Ayala, R. E., and Wobrauschek, P., X-Ray Spectrom. 17, 171 (1988).Google Scholar
11 Bloch, J. M. et al., Phys. Rev. Lett. 54, 1039 (1985).Google Scholar
12 Iida, A., Sakurai, K., and Gohshi, Y., Adv. X-Ray Anal 31. 487 (1987).Google Scholar
13 Heald, S. M., Keller, E., and Stern, E. A., Phys. Lett. 103A, 155 (1984).Google Scholar
14 Greaves, G. N. et al., Daresbury Laboratory Technical Report DL/SCI/P586E, SERC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, U.K.Google Scholar
15 York, B. R. and Austin, A. B., Proc. APIE, X-Rays in Materials Analysis: Novel Applications and Recent Developments, edited by Rush, T. W., Vol 690, P. 135 (1986).Google Scholar
16 Huang, T. C. and York, B. R., Appl. Phys. Lett. 50. 391 (1987).Google Scholar
17 Huang, T. C., Toney, M. F., Brennan, S., and Rek, Z., Thin Solid Films 154, 439 (1987).Google Scholar
18 Toney, M. F., Huang, T. C., Brennan, S., and Rek, Z., J. Mat. Res. 3, 351 (1988).Google Scholar
19 Ishii, Y., Terada, A., Ishii, I., Ohta, S., Hattori, S., and Makino, K., IEEE Trans. Magn. MAG-16, 1114 (1980).Google Scholar
20 Parkin, S. S. P., Sigsbee, R., Felici, R., and Felcher, G. P., Appl. Phys. Lett. 48, 604 (1986).Google Scholar
21 Gallagher, K. J., Feitknedht, W., and Mannweiler, U., Nature 217, 1118 (1968).Google Scholar
22 Moncton, D. E. and Brown, G. S., Nucl. Instrum. Methods, 208, 579 (1983).Google Scholar