Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T00:54:40.676Z Has data issue: false hasContentIssue false

Investigation of Obsidian by Radioisotope X-Ray Fluorescence

Published online by Cambridge University Press:  06 March 2019

Stephen B. Robie
Affiliation:
Rensselaer Polytechnic Institute, Department of Chemistry, Troy, N.Y. 12181
Ivor L. Preiss
Affiliation:
Rensselaer Polytechnic Institute, Department of Chemistry, Troy, N.Y. 12181
Get access

Extract

The classification of obsidian artifacts has been receiving considerable attend of changes in obsidian trace element composition can now be identify ancient trade routes. The classification of this glassy volcanic material has been attempted using a variety of elemental analysis technique. The most successful and most widely employed method of non-destructive analysis has been that which employs X-ray fluorescence analysis (XRF); either wavelength dispersive (WDS), or energy dispersive (EDS).

Type
VIII. Applications of XRF to Archeological, Geochemical and Industrial Materials
Copyright
Copyright © International Centre for Diffraction Data 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heizer, R. F., Williams, H. and Graham, J. A., Contr. Univ. Calif. Arch. Res. Fac., 1, 94103 (1965).Google Scholar
2. Stevenson, D. P., Stross, F. H. and Heizer, R.F., Archaeometry, 13(1), 1725 (1971),Google Scholar
3. Graham, J. A., Hester, T. R. and Jack, R. H., Contr. Univ. Calif. Arch. Res. Fac., 16, 111–2.Google Scholar
4. Bowman, H. R., Asaro, F. and Perlman, I., Archaeometry, 15(1), 123–2 (1973),Google Scholar
5. Cann, J. R. and Renfrew, C., Proc, Prehistoric Soc. 30, 110 (1964).Google Scholar
6. Griffin, J. B., Gordus, A. A. and Wright, G. A., Am. Antiquity, 34(1), 1 (1969).Google Scholar
7. Jack, R. and Charmichael, I., Calif. J. Mines Geol. Short Contr. Calif. Geol. S.R., 100 (1969).Google Scholar
8. Nelson, S. D. E. and D'Aurla, J. H., Archaeometry, 17(1), 85 (1975).Google Scholar
9. Stross, F. H., Stevenson, D. P., Weaver, J. R. and Wyld, G., Science and Archaeology, Brill, R. H. ed., MIT Press, 210–2 (1971).Google Scholar
10. Hester, T. R., Hester, R. N. and Heizer, R. J., Contr. Univ, Calif.’ Arch. Res. Fac., 11, 105–2 (1972).Google Scholar
11. Hester, T. R., Jack, R. N. and Betifer, A., Contr. Univ. Galif, Arch. Res. Fac., 18, 167–2 (1973).Google Scholar
12. Graham, J. A., Hester, T. A. and Jack, R. N., Contr. Univ. Calif. Arch. Res. FAc., 16, 111–2 (1973).Google Scholar
13. Cobean, R. H., Coe, M. D., Perry, E. A., Jr., Turekian, K. H. and Kharker, B. P., Science, 174, 666–2 (1971).Google Scholar
14. Preiss, I. L., Rohie, S., I and E. C. 21, 676 (1982).Google Scholar
15. Frank, A., Preiss, I. L. and Adyeme, A., Radioanal. Chem, (in press) (1983).Google Scholar
16. Jenkins, R., Gould, R. W. and Aedeke, D., Quantitative X-ray Spectrometry, Marcel Dekker, Inc., pp37 (1981)Google Scholar
17. Salem, S. I., Panossian, S. L. and Krause, R. A., ANDT 14, 91 (1974).Google Scholar
18. Doremus, R., Private Communication (1983).Google Scholar