Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-30T21:52:16.730Z Has data issue: false hasContentIssue false

High Resolution X-ray Diffraction Measurements of Strain Relaxed SiGe/Si Structures

Published online by Cambridge University Press:  06 March 2019

P. M. Mooney
Affiliation:
IBM Research Division, T. J. , Watson Research Center PO Box 218, Yorktown Heights, NY 10598
J. L. Jordan-Sweet
Affiliation:
IBM Research Division, T. J. , Watson Research Center PO Box 218, Yorktown Heights, NY 10598
G. B. Stephenson
Affiliation:
IBM Research Division, T. J. , Watson Research Center PO Box 218, Yorktown Heights, NY 10598
F. K. LeGoues
Affiliation:
IBM Research Division, T. J. , Watson Research Center PO Box 218, Yorktown Heights, NY 10598
J. O. Chu
Affiliation:
IBM Research Division, T. J. , Watson Research Center PO Box 218, Yorktown Heights, NY 10598
Get access

Abstract

Both double-crystal and triple-axis x-ray diffraction techniques have been used to study complex SiGe/Si structures. A novel method for measuring the nucleation activation energy of dislocations in strain relaxed SiGe/Si structures is presented to illustrate the usefulness of these techniques.

Type
III. Applications of Diffraction to Semiconductors and Films
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. LeGoues, F.K., Meyerson, B.S. and Morar, J.F., Phys. Rev. Lett. 66, 2903 (1991).Google Scholar
2. Ismail, K., S. Rishton, Chu, J.O., K. Chan, Nelson, S.F., and Meyerson, B.S., Elect. Dev. Lett. 14, 348 (1993).Google Scholar
3. Ismail, K., Chu, J.O., and Meyerson, B.S., Appl. Phys. Lett. 64, 3124 (1994).Google Scholar
4. Kojnig, U. and Schaeffler, F., IEEE Electron Device Letters, 14, 205 (1993).Google Scholar
5. Fitzgerald, E.A., Y,-H, Xie, D. Monroe, Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A., and Weir, B.E., J. Vac. Sci. Technol, B 10, 1807 (1992).Google Scholar
6. Meyerson, B.S., Appl Phys. Lett. 48, 797 (1986).Google Scholar
7. LeGoues, F.K., Meyerson, B.S., Morar, J.F. and Kirchner, P.D., J. Appl. Phys. 71, 4232 (1992).Google Scholar
8. LeGoues, F.K., Phys. Rev. Lett. 72, 876 (1994).Google Scholar
9. LeGoues, F.K., Mooney, P.M., Chu, J.O., Appl. Phys. Lett. 62, 140 (1993).Google Scholar
10. LeGoues, F.K., Mooney, P.M., and J. Tersoff, Phys. Rev. Lett. 71, 396 (1993).Google Scholar
11. Mooney, P.M., LeGoues, F.K., Tersoff, J., and Chu, J.O., J.Appl. Phys. 75, 3968 (1994).Google Scholar
12. Halliwell, M.A.G., Inst. Phys. Conf. Ser. No. 60, 271 (1981).Google Scholar
13. Fewster, P.F., Semicond. Sci, Technol. 8, 1915 (1993).Google Scholar
14. Mooney, P.M., LeGoues, F.K., Chu, J.O. and Nelson, S.F., AppL Phys. Lett. 62, 3464 (1993).Google Scholar
15. Mooney, P.M., LeGoues, F.K., and Jordan-Sweet, J.L., submitted to Appl. Phys. Lett.Google Scholar
16. Kamat, S.V. and Hirth, J.P., J. Appl. Phys. 67, 6844 (1990).Google Scholar