Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T18:10:08.263Z Has data issue: false hasContentIssue false

Characterization of the Tin Diffusion into Float Glass Using Glancing Angle X-Ray Characterization

Published online by Cambridge University Press:  06 March 2019

P. J. LaPuma
Affiliation:
Alfred University, Alfred NY
R. L. Snyder
Affiliation:
Alfred University, Alfred NY
S. Zdzieszynski
Affiliation:
Alfred University, Alfred NY
R. Brückner
Affiliation:
TU Berlin-Anorganische Werkstoffe, Berlin, Germany
Get access

Abstract

Using x-ray reflectometry the surface of float glass samples of different Fe content and thickness were studied. The patterns needed an oil/water layer to be modeled correctiy. The maximum Sn concentration was found to reside in the top 10-20Å of the material and the Sn concentration decreased into the bulk. It was also found that increased Fe content decreased the Sn concentrations in the surface and bulk of the glass.

Type
IX. XRS Mathematical Methods, Trace Analysis and Other Applications
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Toncy, M.F., Brennan, S., J. Appl. Phys., 66, 1861–63 (1989).Google Scholar
2. Tanner, B.K., Bowen, D.K., Journal of Crystal Growth, 126, 118 (1993).Google Scholar
3. van der Vegt, H.A., van Pinxteren, H.M., Lohmeier, M., Vlieg, E., Thorton, J.M.C., Phys. Rev. Lett., 68, 33353338 (1992).Google Scholar
4. Dubru, M.., Fundamentals of Glass Science and Technology, XXIII, 291296 (1993).Google Scholar
5. Leneler, B., Photoemission and Absorption Spectroscopy, 157, (1990).Google Scholar
6. Panat, L.G., Phys. Rev., 95(2), 359, (1954).Google Scholar
7. Wormington, M., Bowen, D.K., Tanner, B.K., Mat. Res, Soc. Symp. Proc, 238, 119 (1992).Google Scholar
8. Bowen, D.K., Wormington, M., Advances In X-ray Analysis, 36, 171184 (1993).Google Scholar
9. Lengeler, B., Adv. Mater., 2, 123131 (1990).Google Scholar
10. Lengeler, B., Mikrochim. Acta, I, 455475 (1987).Google Scholar
11. Huang, T.C., Parrish, W., Advances in X-ray Analysis, 35A, 137142 (1992).Google Scholar
12. Huang, T.C., Advances in X-ray Analysis, 35A, 143150 (1992).Google Scholar
13. Von, H. Kiessig, Annelan der Physik, 10, 715769 (1931).Google Scholar
14. Colombin, L., Jelli, A., Riga, J., Pireaux, J.J., verbist, J., Journal of Non-Crystalline Solids, 24, 253258 (1977).Google Scholar
15. Chappell, R.A., Stoddart, C.T.H., Journal of Materials Science, 12, 2001–10 (1977).Google Scholar
16. Chappell, R.A., Stoddart, C.T.H., Physics and Chemistry of Glasses, 15, 130136 (1974).Google Scholar
17. Baitinger, W.E., French, P.W., Swarts, L., Journal of Non-Crystalline Solids, 38 & 39, 749754 (1980).Google Scholar
18. Verita, M., Geotti-Bianchini, F., Hreglich, S., Bol.Soc.Esp.Ceram.Vid., 31-C, 415420 (1992).Google Scholar
19. Swift, H.R., Glass Industry, 27-30, May (1984).Google Scholar
20. Shelby, J.E., Viko, J. Jr., Journal of Non-Crystalline Solids, 50, 107117 (1992).Google Scholar
21. Slcger, J.S., Journal of Non-Crystalline Solids, 19, 213220 (1975).Google Scholar
22. Pantano, C.G., Bojan, V., Verita, M., Geotti-Bianchini, F., Hreglich, S., Bol.Soc.Esp.Ceram.Vid., (1994).Google Scholar
23. Stephenson, D.A., Binkowski, N.J., Journal of Non-Crystalline Solids, 19, 8788 (1975).Google Scholar
24. Deubener, J., Bruckner, R., Hessenkemper, H., Glastech. Ber. 65, 215217 (1992).Google Scholar
25. Hiippauff, M., Lengeler, B., J. Appl. Phys. 75, 785791 (1994)Google Scholar