Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T18:16:48.379Z Has data issue: false hasContentIssue false

Appllied Crystallography in the Scanning Electron Microscope Using a CCD Detector*

Published online by Cambridge University Press:  06 March 2019

R.R. Goehner
Affiliation:
Materials and Process Sciences Center Sandia National Laboratories Albuquerque, NM 87185-0342
J.R. Michael
Affiliation:
Materials and Process Sciences Center Sandia National Laboratories Albuquerque, NM 87185-0342
Get access

Abstract

The development of a new charge coupled device (CCD)-based detector for the scanning electron microscope (SEM) has allowed high quality backscattered electron Kikuchi patterns (BEKP) suitable for crystallographic analysis to be collected. These BEKPs can be used for crystallographic texture, phase and microstress analysis. This CCD detector system, can also be equipped with a special filter for removing backscattered electrons, which allows us to image low intensity, highly divergent x-ray diffraction (Kossel) patterns. The Kossel patterns are utilized for the accurate measurement of d-spacings suitable foe residual stress and lattice parameter measurements.

Type
VII. Microbeam XRD and XRS Analysis
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was performed at Sandia National Laboratories, which is operated for the U.S. Department of Energy under contract number DE-AC04-94AL85000.

References

1. Alara, M.N., Blackman, M.L., and Pashley, D.W., Proc. Roy. Soc, 221, 224 (1954).Google Scholar
2. Venables, J.A., and Harland, C.J., Phil. Mag., 27, 1193 (1973).Google Scholar
3. Wright, S.J., and Adams, B.L., Metall. Trans., A, 23, 759 (1992).Google Scholar
4. Kossel, W., Math. Natur, 1, 229 (1935).Google Scholar
5. Kossel, W., Ann. Physik, 25, 533 (1936).Google Scholar
6. Morris, W.G., J. Appl. Physics, 39, 1813 (1968).Google Scholar
7. Yakowitz, H., Quantitative Scanning Microscopy, Academic Press, 451, (1974).Google Scholar
8. Dingley, D.J., and Steeds, J.W., Quantitative Scanning Micros., Academic Press, 487, (1974).Google Scholar
9. Michael, J.R., and Goehner, R.P., MSA Bulletin ISSN: 1062-9785, 23, 168 (1993).Google Scholar
10. Troost, K.Z., van der Sluis, P., and Gravssteijn, D.J., Appl. Phys. Lett., 62, 1110 (1993).Google Scholar
11. Dingley, D.J., SEM/, IV, 273. (1981).Google Scholar
12. Dingley, D.J., Longden, M., Wembred, J., and Alderman, J., Scan. Micros., 1, 451 (1987).Google Scholar
13. Biggin, S., and Dingley, D.J., J. Appl. Cryst., 10, 376 (1977).Google Scholar
14. Krieger-Lassen, N.C., and Bidc-Sorensen, J.B., J. Microscopy, 170, 125 (1993).Google Scholar
15. Michael, J.R., and Goehner, R.P., Proc. Ann. EMSA Meteing, 51, 772 (1993).Google Scholar
16. Goehner, R.P., Adv. in X-Ray Analysis., 19, 725726, (1975).Google Scholar
17. Goehner, R.P., Hatfield, W.T., and Rao, P., Proc. Ann., EMSA Meeting , 34, 542 (1976).Google Scholar
18. Smith, D.K. and Smith, K.L., MDI, P.O., Box 791, Livermore, CA, 94551, (1992).Google Scholar
19. Powder Diffraction File (PDF), International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, PAGoogle Scholar