Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T08:38:26.821Z Has data issue: false hasContentIssue false

Investigating the Reliability and Validity of the Portable Osteometric Device

Published online by Cambridge University Press:  05 February 2024

Eric Anderson*
Affiliation:
Cultural Surveys Hawaii, Kailua, HI, USA
Sierra W. Malis
Affiliation:
Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Mississippi State, MS, USA; National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
Anna J. Osterholtz
Affiliation:
Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Mississippi State, MS, USA
Molly K. Zuckerman
Affiliation:
Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Mississippi State, MS, USA
*
(ehanderson2034@gmail.com, corresponding author)

Abstract

Metric analysis of skeletal material is integral to the analysis and identification of human remains, though one commonly used measuring device, the osteometric board, has lagged in recent advancement. Traditional boards are bulky and require manual measurement recording, potentially generating intra- and interobserver error. To address these limitations, we tested the reliability, validity, and error rates of a novel device, the Portable Osteometric Device Version 1 (PODv1), which measures distance using laser sensors with time-of-flight technology. Forty-five volunteers measured four skeletal elements with the PODv1 and a PaleoTech osteometric board in three rounds. Comparison of tibia, humerus, and femur measurements with both devices showed no significant differences, although the maximum length of the ulna did differ, potentially because of observer confusion regarding the PODv1's user instructions for this element. Our results suggest that the PODv1 is a reliable, valid measurement device compared to traditional osteometric boards. Although both device types can produce calibration, transcription, and observer errors, the time-of-flight technology and the absence of manual recording built into the PODv1 may limit those errors. These advancements and their potential positive impacts on the accuracy of osteometric data collection may have far-reaching benefits for osteological, bioarchaeological, paleopathological, and forensic anthropological data collection.

El análisis métrico del material esquelético es integral para el análisis e identificación de restos humanos, aunque uno de los dispositivos de medición más comúnmente utilizados, la tabla osteométrica, ha quedado rezagada en los avances recientes. Las tablas tradicionales son voluminosas y requieren la medición manual, lo que puede generar errores intra e inter-observador. Para abordar estas limitaciones, probamos la confiabilidad, validez y tasas de error de un nuevo dispositivo, el Dispositivo Osteométrico Portátil Versión 1 (PODv1), que mide la distancia utilizando sensores láser con tecnología de tiempo de vuelo. Cuarenta y cinco voluntarios midieron cuatro elementos esqueléticos con el PODv1 y una tabla osteométrica PaleoTech en tres rondas. La comparación de las medidas de la tibia, el húmero y el fémur con ambos dispositivos no mostró diferencias significativas, aunque la longitud máxima de la ulna difirió entre ellos, posiblemente debido a la confusión del observador en torno a las instrucciones de uso del PODv1 para este elemento. Los resultados sugieren que el PODv1 es un dispositivo de medición confiable y válido en comparación con las tablas osteométricas tradicionales. Aunque ambos tipos de dispositivos pueden implicar errores de calibración, transcripción y observación, la tecnología de tiempo de vuelo y la ausencia de necesidad de registro manual incorporadas en el PODv1 pueden limitar estos problemas. Estos avances y sus posibles impactos positivos en la precisión de la recopilación de datos osteométricos pueden tener beneficios de largo alcance para la recopilación de datos osteológicos, bioarqueológicos, paleopatológicos y antropológicos forenses.

Type
Article
Open Practices
Open materials
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article has earned badges for transparent research practices: Open Materials. For details see the Data Availability Statement.

References

REFERENCES CITED

AdaFruit. 2016. Adafruit VL53L0X Time of Flight Micro-LIDAR Distance Sensor Breakout. Adafruit Learning System. https://learn.adafruit.com/adafruit-vl53l0x-micro-lidar-distance-sensor-breakout/overview, accessed March 2, 2021.Google Scholar
Adams, Bradley, and Byrd, John. 2002. Interobserver Variation of Selected Postcranial Skeletal Measurements. Journal of Forensic Sciences 47(6):11931202.CrossRefGoogle ScholarPubMed
Albanese, John., Tuck, Andrew, Gomes, José, and Cardoso, Hugo. 2016. An Alternative Approach for Estimating Stature from Long Bones That Is Not Population-or Group-Specific. Forensic Science International 259:5968.CrossRefGoogle ScholarPubMed
Albrecht, Gene. 1983. Humidity as a Source of Measurement Error in Osteometrics. American Journal of Physical Anthropology 60(4):517521.CrossRefGoogle ScholarPubMed
AliExpress 2022. “35.4US $ 9% OFF|50m/164ft Laser Distance Measuring Sensor Range Finder Module Low Cost Diastimeter Single & Continuous Measurement| Distance Measuring Sensor |Measuring Sensormeasure Distance—AliExpress.” Aliexpress.com. www.aliexpress.com/item/32823813140.html?src=ibdm_d03p0558e02r02&sk=&aff_platform=&aff_trace_key=&af=&cv=&cn=&dp, accessed January 28, 2022.Google Scholar
Anderson, Eric, and Osterholtz, Anna. 2021. The Future Is Coming: Osteometric Laser. Poster presentation at the Mississippi State University Graduate Student Symposium, Mississippi State University, Mississippi State.Google Scholar
Buikstra, Jane, and Ubelaker, Douglas. 1994. Standards for Data Collection from Human Skeletal Remains. Research Series No. 44. Arkansas Archeological Survey, Fayetteville.Google Scholar
DiGangi, Elizabeth, and Moore, Megan. 2012. Introduction to Skeletal Biology. In Research Methods in Human Skeletal Biology, edited by DiGangi, Elizabeth and Moore, Megan, pp. 328. Academic Press, Boston.Google Scholar
Geise, Marie. 1986. Technical Report: The Effects of Humidity on the Abawerk Osteometric Board. American Journal of Physical Anthropology 71(4):485486.CrossRefGoogle ScholarPubMed
Harris, Edward, and Smith, Richard. 2009. Accounting for Measurement Error: A Critical but Often Overlooked Process. Archives of Oral Biology 54(1):107117.CrossRefGoogle ScholarPubMed
Hepburn, David. 1899. A New Osteometric Board. Journal of Anatomy and Physiology 34(1):111112.Google ScholarPubMed
Jamison, Paul, and Zegura, Stephen. 1974. A Univariate and Multivariate Examination of Measurement Error in Anthropometry. American Journal of Physical Anthropology 40(2):197203.CrossRefGoogle ScholarPubMed
Jans, Ryan, Green, Adam, and Koerner, Lucas. 2020. Characterization of a Miniaturized IR Depth Sensor with a Programmable Region-of-Interest That Enables Hazard Mapping Applications. IEEE Sensors Journal 20(10):52135220.CrossRefGoogle Scholar
Koerner, Lucas. 2021. Models of Direct Time-of-Flight Sensor Precision That Enable Optimal Design and Dynamic Configuration. IEEE Transactions on Instrumentation and Measurement 70:19.CrossRefGoogle Scholar
Langley, Natalie, Jantz, Lee, McNulty, Shauna, Maijanen, Heli, Ousley, Stephen, and Jantz, Richard. 2018. Error Quantification of Osteometric Data in Forensic Anthropology. Forensic Science International 287:183189.CrossRefGoogle ScholarPubMed
Langley, Natalie, Jantz, Lee, Ousley, Stephen, Jantz, Richard, and Milner, George. 2016. Data Collection Procedures for Forensic Skeletal Material 2.0. Forensic Anthropology Center. Department of Anthropology, University of Tennessee, Knoxville.Google Scholar
Marklein, Kathryn, Leahy, Rachael, and Crews, Douglas. 2016. In Sickness and in Death: Assessing Frailty in Human Skeletal Remains. American Journal of Physical Anthropology 161(2):208225.CrossRefGoogle ScholarPubMed
Marks, Jonathan. 2012. Why Be against Darwin? Creationism, Racism, and the Roots of Anthropology. American Journal of Physical Anthropology 149(55):95104.CrossRefGoogle ScholarPubMed
Marks, Jonathan. 2017. Is Science Racist? Polity Press, Malden, Massachusetts.Google Scholar
Moore, Megan. 2012. Sex Estimation and Assessment. In Research Methods in Human Skeletal Biology, ed. DiGangi, Elizabeth and Moore, Megan, pp. 91116. Academic Press, Boston.Google Scholar
Moore, Megan, and Ross, Anna. 2012. Stature Estimation. In Research Methods in Human Skeletal Biology, ed. DiGangi, Elizabeth and Moore, Megan, pp. 151179. Academic Press, Boston,.Google Scholar
Nance, Jack. 1987. Reliability, Validity, and Quantitative Methods in Archaeology. In Qauntitative Research in Archaeology: Progress and Prospects, edited by Aldenderfer, Mark, pp. 245293. SAGE Publications, Newbury Park, California.Google Scholar
Naples, Virginia, Breed, David, and Miller, Jon. 2010. A Skeleton Tells Its Own Story: Forensic Analyses of Skeletal Elements for the Science Classroom Laboratory. American Biology Teacher 72(3):162711.CrossRefGoogle Scholar
Perini, Talita, de Oliveira, Glauber Lamiera, Santos Ornellas, Juliana dos, and de Oliveira, Fátima Palha. 2005. Technical Error of Measurement in Anthropometry. Revista Brasileira de Medicina do Esporte 11(1):8190.CrossRefGoogle Scholar
Schiller, Francis. 1992. Paul Broca, Founder of French Anthropology, Explorer of the Brain. Oxford University Press, Oxford.Google Scholar
Spradley, Kate. 2016. Metric Methods for the Biological Profile in Forensic Anthropology: Sex, Ancestry, and Stature. Academic Forensic Pathology 6(3):391399.CrossRefGoogle ScholarPubMed
White, Tim, Black, Michael, and Folkens, Pieter. 2011. Human Osteology. 3rd ed. Academic Press, New York.Google Scholar
Wilcoxon, Frank. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6):8088.CrossRefGoogle Scholar
Supplementary material: File

Anderson et al. supplementary material

Anderson et al. supplementary material
Download Anderson et al. supplementary material(File)
File 56.7 KB