Skip to main content Accessibility help
×
Home

Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation

  • M. H. Heydari (a1), M. R. Hooshmandasl (a1) and F. Mohammadi (a2)

Abstract

In this paper, we develop an accurate and efficient Legendre wavelets method for numerical solution of the well known time-fractional telegraph equation. In the proposed method we have employed both of the operational matrices of fractional integration and differentiation to get numerical solution of the time-telegraph equation. The power of this manageable method is confirmed. Moreover the use of Legendre wavelet is found to be accurate, simple and fast.

Copyright

Corresponding author

Corresponding author. Email: f.mohammadi62@hotmail.com

References

Hide All
[1]Sun, H. G., Chen, W., Li, C. P. and Chen, Y. Q., Fractional differential models for anomalous diffusion, Phys. A-Statist. Mech. Appl., 389(14) (2010), pp. 27192724.
[2]Chen, W., Time-space fabric underlying anomalous diffusion, Chaos Solitons Fract., 28(4) (2006), pp. 923929.
[3]Sun, H., Chen, W., Wei, H. and Chen, Y. Q., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Euro. Phys. J. Special Topics, 193 (2011), pp. 185193.
[4]Carpinteri, A. AND Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics, Wien, New York, Springer Verlag, 1997.
[5]Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, Wiley, 1993.
[6]Oldham, K. B. AND Spanier, J., The Fractional Calculus, New York, Academic Press, 1974.
[7]Podlubny, I., Fractional Differential Equations, San Diego, Academic Press, 1999.
[8]Podlubny, I., Fractional-order systems andfractional-order controllers, Institute of Experimental Physics, Kosice, Slovakia, Report UEF-03-94, Slovak Academy of Sciences, November 1994.
[9]Gorenflo, R. and Mainardi, F., Fractional calculus: integral and differential equations of fractional order, in: Carpinteri, A., Mainardi, F. (eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, pp. 223276,1997.
[10]Schneider, W. R. and Wyess, W., Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), pp. 134144.
[11]Lepik, U., Solving pdes with the aid of two-dimensional haar wavelets, Comput. Math. Appl., 61 (2011), pp. 18731879.
[12]Anderson, U. and Engquist, B., A contribution to wavelet-based subgrid modeling, Appl. Comput. Harmon. Model, 7 (1999), pp. 151164.
[13]Cattani, C., Haar wavelets based technique in evolution problems, Chaos Proc. Estonian Acad. Sci. Phys. Math., 1 (2004), pp. 4553.
[14]Coult, N., Explicit formulas for wavelet-homogenized coefficients of elliptic operators, Appl. Comput. Harmon. Anal., 21 (2001), pp. 360375.
[15]Chen, X., Xiang, J., Li, B., and He, Z., A study of multiscale wavelet-based elements for adaptive finite element analysis, Adv. Eng. Software, 41 (2010), pp. 196205.
[16]Hariharan, G., Kannan, K., and Sharma, K., Haar wavelet method for solving fishers equa-tion, Appl. Math. Comput., 211(2) (2009), pp. 284292.
[17]Mrazek, P. and Weickert, J., From two-dimensional nonlinear diffusion to coupled haar wavelet shrinkage, J. Vis. Commun. Image. Represent, 18 (2007), pp. 162175.
[18]Fan, W. and Qiao, P., A 2-d continuous wavelet transform of mode shape data for damage detection of plate structures, Int. J. Solids Structures, 46 (2003), pp. 64736496.
[19]Kim, J. E., Yang, G.-W., and Kim, Y. Y., Adaptive multiscale wavelet-galerkin analysis for plane elasticity problems and its application to multiscale topology design optimation, Int. J. Solids Structures, Comput Appl. Math., 40 (2003), pp. 64736496.
[20]Shen, Y. and Li, W., The natural integral equations of plane elasticity problems and its wavelet methods, Appl. Math. Comput., 150(2) (2004), pp. 417438.
[21]Chun, Z. and Zheng, Z., Three-dimensional analysis of functionally graded plate based on the haar wavelet method, Acta Mech. Solida Sin., 20(2) (2007),pp. 95102.
[22]Lam, H. F. and Ng, C. T., A probabilistic method for the detection of obstructed cracks of beam-type structures using spacial wavelet transform, Probab. Eng. Mech., 23 (2008), pp. 239245.
[23]Majak, J., Pohlak, M., Eerme, M., and Lepikult, T., Weak formulation based haar wavelet method for solving differential equations, Appl. Math. Comput., 211 (2009), pp. 488494.
[24] L. Castro, M. S., Ferreira, A., Bertoluzza, S., Patra, R., and Reddy, J., A wavelet collocation method for the static analysis of sandwich plates ussing a layerwise theory, Compos. Struct., 92 (2010), pp. 17861792.
[25]Lakestani, M. and Saray, B. N., Numerical solution of telegraph equation using interpolating scaling functions, Comput. Math. Appl., 60 (2010), pp. 19641972.
[26]Cascaval, R. C., Eckstein, E. C., Frota, C. L., and Goldstein, J. A., Fractional telegraph equations, Math. Anal. Appl., 276 (2002), pp. 145159.
[27]Orsingher, E. and Beghin, L., Time-fractional telegraph equations and telegraph processes with brownian time, Prob. Theory Relat. Fields, 128 (2004), pp. 141160.
[28]Chen, J., Liu, F., and Anh, V., Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), pp. 364377.
[29]Orsingher, E. and Zhao, X., The space-fractional telegraph equation and the related fractional telegraph process, Chinese Annal. Math. Ser. B, 24 (2003), pp. 4556.
[30]Momani, S., Analytic and approximate solutions of the space- and time-fractional telegraph equations, Appl. Math. Comput., 170 (2005), pp. 11261134.
[31]U, R. M. and Khan, R. A., The legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 227(2) (2009), pp. 234244.
[32]Heydari, M. H., Hooshmandasl, M. R., Ghaini, F. M. M., and Mohammadi, F., Wavelet collocation method for solving multi order fractional differential equations, J. Appl. Math., Volume 2012, Article ID 542401,19 pages doi:10.1155/2012/542401.
[33]Kilicman, A. and Zhour, Z. A., Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187(1) (2007), pp. 250265.

Keywords

Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation

  • M. H. Heydari (a1), M. R. Hooshmandasl (a1) and F. Mohammadi (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed