Skip to main content Accessibility help

Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation

  • M. H. Heydari (a1), M. R. Hooshmandasl (a1) and F. Mohammadi (a2)


In this paper, we develop an accurate and efficient Legendre wavelets method for numerical solution of the well known time-fractional telegraph equation. In the proposed method we have employed both of the operational matrices of fractional integration and differentiation to get numerical solution of the time-telegraph equation. The power of this manageable method is confirmed. Moreover the use of Legendre wavelet is found to be accurate, simple and fast.


Corresponding author

Corresponding author. Email:


Hide All
[1]Sun, H. G., Chen, W., Li, C. P. and Chen, Y. Q., Fractional differential models for anomalous diffusion, Phys. A-Statist. Mech. Appl., 389(14) (2010), pp. 27192724.
[2]Chen, W., Time-space fabric underlying anomalous diffusion, Chaos Solitons Fract., 28(4) (2006), pp. 923929.
[3]Sun, H., Chen, W., Wei, H. and Chen, Y. Q., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Euro. Phys. J. Special Topics, 193 (2011), pp. 185193.
[4]Carpinteri, A. AND Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics, Wien, New York, Springer Verlag, 1997.
[5]Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, Wiley, 1993.
[6]Oldham, K. B. AND Spanier, J., The Fractional Calculus, New York, Academic Press, 1974.
[7]Podlubny, I., Fractional Differential Equations, San Diego, Academic Press, 1999.
[8]Podlubny, I., Fractional-order systems andfractional-order controllers, Institute of Experimental Physics, Kosice, Slovakia, Report UEF-03-94, Slovak Academy of Sciences, November 1994.
[9]Gorenflo, R. and Mainardi, F., Fractional calculus: integral and differential equations of fractional order, in: Carpinteri, A., Mainardi, F. (eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, pp. 223276,1997.
[10]Schneider, W. R. and Wyess, W., Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), pp. 134144.
[11]Lepik, U., Solving pdes with the aid of two-dimensional haar wavelets, Comput. Math. Appl., 61 (2011), pp. 18731879.
[12]Anderson, U. and Engquist, B., A contribution to wavelet-based subgrid modeling, Appl. Comput. Harmon. Model, 7 (1999), pp. 151164.
[13]Cattani, C., Haar wavelets based technique in evolution problems, Chaos Proc. Estonian Acad. Sci. Phys. Math., 1 (2004), pp. 4553.
[14]Coult, N., Explicit formulas for wavelet-homogenized coefficients of elliptic operators, Appl. Comput. Harmon. Anal., 21 (2001), pp. 360375.
[15]Chen, X., Xiang, J., Li, B., and He, Z., A study of multiscale wavelet-based elements for adaptive finite element analysis, Adv. Eng. Software, 41 (2010), pp. 196205.
[16]Hariharan, G., Kannan, K., and Sharma, K., Haar wavelet method for solving fishers equa-tion, Appl. Math. Comput., 211(2) (2009), pp. 284292.
[17]Mrazek, P. and Weickert, J., From two-dimensional nonlinear diffusion to coupled haar wavelet shrinkage, J. Vis. Commun. Image. Represent, 18 (2007), pp. 162175.
[18]Fan, W. and Qiao, P., A 2-d continuous wavelet transform of mode shape data for damage detection of plate structures, Int. J. Solids Structures, 46 (2003), pp. 64736496.
[19]Kim, J. E., Yang, G.-W., and Kim, Y. Y., Adaptive multiscale wavelet-galerkin analysis for plane elasticity problems and its application to multiscale topology design optimation, Int. J. Solids Structures, Comput Appl. Math., 40 (2003), pp. 64736496.
[20]Shen, Y. and Li, W., The natural integral equations of plane elasticity problems and its wavelet methods, Appl. Math. Comput., 150(2) (2004), pp. 417438.
[21]Chun, Z. and Zheng, Z., Three-dimensional analysis of functionally graded plate based on the haar wavelet method, Acta Mech. Solida Sin., 20(2) (2007),pp. 95102.
[22]Lam, H. F. and Ng, C. T., A probabilistic method for the detection of obstructed cracks of beam-type structures using spacial wavelet transform, Probab. Eng. Mech., 23 (2008), pp. 239245.
[23]Majak, J., Pohlak, M., Eerme, M., and Lepikult, T., Weak formulation based haar wavelet method for solving differential equations, Appl. Math. Comput., 211 (2009), pp. 488494.
[24] L. Castro, M. S., Ferreira, A., Bertoluzza, S., Patra, R., and Reddy, J., A wavelet collocation method for the static analysis of sandwich plates ussing a layerwise theory, Compos. Struct., 92 (2010), pp. 17861792.
[25]Lakestani, M. and Saray, B. N., Numerical solution of telegraph equation using interpolating scaling functions, Comput. Math. Appl., 60 (2010), pp. 19641972.
[26]Cascaval, R. C., Eckstein, E. C., Frota, C. L., and Goldstein, J. A., Fractional telegraph equations, Math. Anal. Appl., 276 (2002), pp. 145159.
[27]Orsingher, E. and Beghin, L., Time-fractional telegraph equations and telegraph processes with brownian time, Prob. Theory Relat. Fields, 128 (2004), pp. 141160.
[28]Chen, J., Liu, F., and Anh, V., Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), pp. 364377.
[29]Orsingher, E. and Zhao, X., The space-fractional telegraph equation and the related fractional telegraph process, Chinese Annal. Math. Ser. B, 24 (2003), pp. 4556.
[30]Momani, S., Analytic and approximate solutions of the space- and time-fractional telegraph equations, Appl. Math. Comput., 170 (2005), pp. 11261134.
[31]U, R. M. and Khan, R. A., The legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 227(2) (2009), pp. 234244.
[32]Heydari, M. H., Hooshmandasl, M. R., Ghaini, F. M. M., and Mohammadi, F., Wavelet collocation method for solving multi order fractional differential equations, J. Appl. Math., Volume 2012, Article ID 542401,19 pages doi:10.1155/2012/542401.
[33]Kilicman, A. and Zhour, Z. A., Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187(1) (2007), pp. 250265.


Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation

  • M. H. Heydari (a1), M. R. Hooshmandasl (a1) and F. Mohammadi (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed