Skip to main content Accessibility help

Two New Energy-Preserving Algorithms for Generalized Fifth-Order KdV Equation

  • Qi Hong (a1) (a2), Yushun Wang (a2) and Qikui Du (a2)


In this paper, based on the multi-symplectic formulations of the generalized fifth-order KdV equation and the averaged vector field method, two new energy-preserving methods are proposed, including a new local energy-preserving algorithm which is independent of the boundary conditions and a new global energy-preserving method. We prove that the proposed methods preserve the energy conservation laws exactly. Numerical experiments are carried out, which demonstrate that the numerical methods proposed in the paper preserve energy well.


Corresponding author

*Corresponding author. Email: (Q.Hong), (Y. S.Wang), (Q. K. Du)


Hide All
[1] Bibi, N., Tirmizi, S. I. A. and Haq, S., Meshless method of lines numerical solution of Kawahara-Type equations, Appl. Math., 2 (2011), pp. 608618.
[2] Bridges, T. J., Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121 (1997), pp. 147190.
[3] Bridges, T. J. and Reich, S., Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184193.
[4] Cai, J. X. and Wang, Y. S., A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system, China Phys. B, 22 (2013), 060207.
[5] Cai, J. X. and Wang, Y. S., Local structure-preserving algorithms for the “good” Boussinesq equation, J. Comput. Phys., 239 (2013), pp. 7289.
[6] Cai, J. X., Wang, Y. S. and Liang, H., Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schröinger system, J. Comput. Phys., 239 (2013), pp. 3050.
[7] Ceballos, J. C., Sepúlveda, M. and Villagrán, O. P. V., The KdV-Kawahara equation in a bounded domain and some numerical results, Appl. Math. Comput., 190 (2007), pp. 912936.
[8] Celledoni, E., Grimm, V., McLachlan, R. I., McLaren, D. I., O'Neale, D., Owren, B. and Quispel, G. R. W., Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method, J. Comput. Phys., 231 (2012), pp. 67706789.
[9] Celledoni, E., McLachlan, R. I., McLaren, D. I., Owren, B., Quispel, G. R. W. and Wright, W. M., Energy-preserving Runge-Kutta methods, ESAIM: Math. Model. Numer. Anal., 43 (2009), pp. 645649.
[10] Chen, Y., Sun, Y. J. and Tang, Y. F., Energy-preserving numerical methods for Landau-Lifshitz equation, J. Phys. A Math. Theor., 44 (2011), 295207.
[11] Chen, Y. M., Zhu, H. J. and Song, S. H., Multi-symplectic splitting method for the coupled nonlinear Schrödinger equation, Comput. Phys. Commun., 181 (2010), pp. 12311241.
[12] Cui, Y. F. and Mao, D. K., Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation, J. Comput. Phys., 227 (2007), pp. 376399.
[13] Fei, Z. and Vázquez, L., Two energy conserving numerical schemes for the Sine-Gordon equation, Appl. Math. Comput., 45 (1991), pp. 1730.
[14] Feng, K. and Qin, M. Z., The Symplectic Methods for Computation of Hamiltonian Systems, Berlin: Springer, (1987), pp. 137.
[15] Feng, K. and Qin, M. Z., Symplectic Geometric Algorithms for Hamiltonian Systems, Berlin/Hangzhou: Springer-Verlag/Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, 2003.
[16] Fla, T., A numerical energy conserving method for the DNLS equation, J. Comput. Phys., 101 (1992), pp. 7179.
[17] Furihata, D., Finite difference schemes for that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), pp. 181205.
[18] Gong, Y. Z., Cai, J. X. and Wang, Y. S., Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, J. Comput. Phys., 279 (2014), pp. 80102.
[19] Hairer, E., Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5 (2010), pp. 7384.
[20] Hairer, E., Lubich, C. and Wanner, G., Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Diffenential Equations, Berlin: Springer-Verlag, 2006.
[21] Hu, W. P. and Deng, Z. C., Multi-symplectic method for generalized fifth-order KdV equation, China Phys. B, 17 (2008), 3923.
[22] Kaya, D. and Al-Khaled, K., A numerical comparision of a Kawahara equation, Phys. Lett. A, 363 (2007), pp. 433439.
[23] Marsden, J., Patrick, G. and Shkoller, S., Mulltisymplectic geometry, variational integrators and nonlinear PDEs, Commun. Math. Phys., 199 (1998), pp. 351395.
[24] Matsuo, T. and Furihata, D., Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171 (2001), pp. 425447.
[25] McLachlan, R. I., Quispel, G. R. W. and Robidoux, N., Geometric integration using discrete gradients, Philos. Trans. R. Soc. A, 357 (1999), pp. 10211046.
[26] Quispel, G. R. W. and McLaren, D. I., A new class of energy-preserving numerical integration methods, J. Phys. A Math. Theor., 41 (2008), 045206.
[27] Shen, J. and Tang, T., Spectral and High-order Methods with Applications, Science Press, 2006.
[28] Wang, Y. S., Wang, B. and Qin, M. Z., Local structure-preserving algorithms for partial differential equations, Sci. China Ser. A, 51 (2008), pp. 21152136.
[29] Yuan, J. M., Shen, J. and Wu, J. H., A Dual-Petrov-Galerkin method for the Kawahara-Type equation, J. Sci. Comput., 34 (2008), pp. 4863.


MSC classification

Two New Energy-Preserving Algorithms for Generalized Fifth-Order KdV Equation

  • Qi Hong (a1) (a2), Yushun Wang (a2) and Qikui Du (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.