[1]
Biot, M., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), pp. 240–253.

[2]
Lord, H. and Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solid, 15 (1967), pp. 299–309.

[3]
Dhaliwal, R. and Sherief, H., Generalized thermoelasticity for anisotropic media, Quart. Appl. Math., 33 (1980), pp. 1–8.

[4]
Li, Changpin, Zhao, Zhengang and Chen, Yangquan, Numerical approximation and error estimation of a time fractional order diffusion equation, Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 30–September 2, 2009, San Diego, California, USA.

[5]
Caputo, M. and Mainardi, F., A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), pp. 134–147.

[6]
Caputo, M. and Mainardi, F., Linear model of dissipation in anelastic solids, Rivis ta del Nuovo cimento, 1 (1971), pp. 161–198.

[7]
Caputo, M., Vibrations on an infinite viscoelastic layer with a dissipative memory, J. Acoust. Society America, 56 (1974), pp. 897–904.

[8]
Miller, K. S. and Ross, B., An Introduction to the Fractional Integrals and Derivatives—Theory and Applications, JohnWiley & Sons Inc, NewYork, 1993.

[9]
Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional Integrals and Derivatives—Theory and Applications, Gordon and Breach, Longhorne, PA, 1993.

[10]
Oldham, K. B. and Spanier, J., The Fractional Calculus, Academic Press, New York, 1974.

[11]
Gorenflo, R. and Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997.

[12]
Podlubny, I., Fractional Differential Equations, Academic Press, NewYork, 1999.

[13]
Hilfer, R., Applications of Fraction Calculus in Physics, World Scientific, Singapore, 2000.

[14]
Sherief, H., El-Sayad, A. M. A. and Abd El-Latief, A. M., Fractional order theory of thermoelasticity, Int. J. Solids Structures, 47 (2010), pp. 269–275.

[15]
Zenkour, M. and Abouelregal, A. E., State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction, Zeitschrift für angewandte Mathematik und Physik, 65(1) (2014), pp. 149–164.

[16]
Abouelregal, A. E. and Zenkour, A. M., The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium, Chinese Phys. B, 22(10) (2013), 108102.

[17]
Mashat, D. S., Zenkour, A. M. and Abouelregal, A. E., fractional order thermoelasticity theory for a half-space subjected to an axisymmetric heat distribution, Mech. Adv. Mater. Structures, 22(11) (2015), pp. 925–932.

[18]
Sur, A. and Kanoria, M., Fractional order generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect, Latin American Journal of Solid and Structures, 11 (2014), pp. 1132–1162.

[19]
Youssef Hamdy, M. and Al-Lehaibi Eman, A., Fractional order generalized thermoelastic half-space subjected to ramp-type heating, Mech. Res. Commun., 37 (2010), pp. 448–452.

[20]
Honig, G. and Hirdes, U., A method for the numerical inversion of the Laplace transform, J. Comput. Appl. Math., 10 (1984), pp. 113–132.