[1]
Hong, J. and Li, C., Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations, J. Comput. Phys., 211 (2006), pp. 448–472.

[2]
Xu, J., Shao, S. and Tang, H., Numerical methods for nonlinear Dirac equation, J. Comput. Phys., 245 (2013), pp. 131–149.

[3]
Alvarez, A., Linear Crank-Nicholsen scheme for nonlinear Dirac equations, J. Comput. Phys., 99 (1992), pp. 348–350.

[4]
Alvarez, A. and Carreras, B., Interaction dynamics for the solitary waves of a nonlinear Dirac model, Phys. Lett. A, 86 (1981), pp. 327–332.

[5]
Wang, H. and Tang, H. Z., An efficient adaptive mesh redistribution method for a nonlinear Dirac equation, J. Comput. Phys., 222 (2007), pp. 176–193.

[6]
De Frutos, J. and Sanz-Serna, J. M., Split-step spectral schemes for nonlinear Dirac systems, J. Comput. Phys., 83 (1989), pp. 407–423.

[7]
Shao, S. and Tang, H., Interaction for the solitary waves of a nonlinear Dirac model, Phys. Lett. A, 345 (2005), pp. 119–128.

[8]
Shao, S. and Tang, H., Interaction of solitary waves with a phase shift in a nonlinear Dirac model, Commun. Comput. Phys., 3 (2008), pp. 950–967.

[9]
Bridges, T. and Reich, S., Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184–193.

[10]
Zhu, H., Tang, L., Song, S., Tang, Y. and Wang, D., Symplectic wavelet collocation method for Hamiltonian wave equations, J. Comput. Phys., 229 (2010), pp. 2550–2572.

[11]
Zhu, H., Song, S. and Chen, Y., Multi-symplectic wavelet collocation method for Maxwell’s equations, Adv. Appl. Math. Mech., 3 (2011), pp. 663–688.

[12]
Zhu, H., Song, S. and Tang, Y., Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa–Holm equation, Comput. Phys. Commun., 182 (2011), pp. 616–627.

[13]
Qian, X., Chen, Y. and Song, S., Novel conservative methods for Schrödinger equations with variable coefficients over long time, Commun. Comput. Phys., 15 (2014), pp. 692–711.

[14]
Mclachlan, R. and Quispel, G., Splitting methods, Acta Numer., 11 (2002), pp. 341–434.

[15]
Ryland, B., Mclachlan, R. and Frank, J., On the multisymplecticity of partitioned Runge–Kutta and splitting methods, Int. J. Comput. Math., 84 (2007), pp. 847–869.

[16]
Kong, L., Hong, J., Fu, F. and Chen, J., Symplectic structure-preserving integrators for the two-dimensional Gross–Pitaevskii equation for BEC, J. Comput. Appl. Math., 235 (2011), pp. 4937–4948.

[17]
Ma, Y., Kong, L., Hong, J. and Cao, Y., High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations, Comput. Math. Appl., 61 (2011), pp. 319–333.

[18]
Chen, Y., Zhu, H. and Song, S., Multi-symplectic splitting method for two-dimensional nonlinear Schrödinger equation, Commun. Theor. Phys., 56 (2011), pp. 617–622.

[19]
Qian, X., Song, S. and Chen, Y., A semi-explicit multi-symplectic splitting scheme for 3-coupled nonlinear Schrödinger equation, Comput. Phys. Commun., 185 (2014), pp. 1255–1264.

[20]
Qian, X., Song, S., Gao, E. and Li, W., Explicit multi-symplectic method for the Zakharov–Kuznetsov equation, China Phys. B, 21 (2012), 070206.

[21]
Reich, S., Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), pp. 473–499.

[22]
Bridges, T. and Reich, S., Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations, Phys. D, 152 (2001), pp. 491–504.

[23]
Chen, J. and Qin, M., Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electron. Trans. Numer. Anal., 12 (2001), pp. 193–204.

[24]
Chen, J., Qin, M. and Tang, Y., Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation, Comput. Math. Appl., 43 (2002), pp. 1095–1106.

[25]
Wang, Y., Jiang, J. and Cai, W., Numerical analysis of a multi-symplectic scheme for the time-domain Maxwell's equations, J. Math. Phys., 52 (2011), 123701.

[26]
Aydin, A. and Karasözen, B., Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions, Comput. Phys. Commun., 177 (2007), pp. 566–583.

[27]
Aydin, A. and Karasözen, B., Lobatto IIIA-IIIB discretization of the strongly coupled nonlinear Schrödinger equation, J. Comput. Appl. Math., 235 (2011), pp. 4770–4779.

[28]
Frank, J., Conservation of wave action under multisymplectic discretizations, J. Phys. A Math. Gen., 39 (2006), pp. 5479–5493.

[29]
Frank, J., Moore, B. and Reich, S., Linear PDEs and numerical method that preserve a multisymplectic conservation law, SIAM J. Sci. Comput., 28 (2006), pp. 260–277.

[30]
Moore, B. and Reich, S., Backward error analysis for multi-symplectic integration methods, Numer. Math., 95 (2003), pp. 625–652.

[31]
Moore, B., Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations, Math. Comput. Simul., 80 (2009), pp. 20–28.

[32]
Hong, J. and Sun, Y., Generating functions of multi-symplectic RK methods via DW Hamilton–Jacobi equations, Numer. Math., 110 (2008), pp. 491–519.

[33]
Ascher, U. and Mclachlan, R., Multi symplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), pp. 255–269.

[34]
Islas, A. and Schober, C., On the preservation of phase space structure under multisymplectic discretization, J. Comput. Phys., 197 (2004), pp. 585–609.

[35]
Miyatake, Y., Yaguchi, T. and Matsuo, T., Numerical integration of the Ostrovsky equationbased on its geometric structures, J. Comput. Phys., 231 (2012), pp. 4542–4559.

[36]
Strang, G., On the construction and comparison of difference scheme, SIAM J. Numer. Anal., 5 (1968), pp. 506–517.