Skip to main content Accessibility help

Numerical Simulation for the Variable-Order Fractional Schrödinger Equation with the Quantum Riesz-Feller Derivative

  • N. H. Sweilam (a1) and M. M. Abou Hasan (a1)


In this paper the space variable-order fractional Schrödinger equation (VOFSE) is studied numerically, where the variable-order fractional derivative is described here in the sense of the quantum Riesz-Feller definition. The proposed numerical method is the weighted average non-standard finite difference method (WANSFDM). Special attention is given to study the stability analysis and the convergence of the proposed method. Finally, two numerical examples are provided to show that this method is reliable and computationally efficient.


Corresponding author

*Corresponding author. Email: (N. H. Sweilam)


Hide All
[1] Atangana, A. and Cloot, A. H., Stability and convergence of the space fractional variable-order Schrödinger equation, Adv. Difference Equations, 80 (2013), doi:10.1016/
[2] Bibi, A., Kamran, A., Hayat, U. and Mohyud-Din, S., New iterative method for time-fractional Schrödinger equations, World J. Model. Simulation, 9(2) (2013), pp. 8995.
[3] Bhrawy, A. H. and Zaky, M. A., Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 78(4) (2014), doi:10.1007/s11071-014-1854-7.
[4] Arenas, A. J., González-Parrab, G. and Chen-Charpentier, B. M., Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulation, 121 (2016), pp. 4863.
[5] Nagy, A. and Sweilam, N., An effcient method for solving fractional Hodgkin-Huxley model, Phys. Lett. A, 378(30) (2014), pp. 19801984.
[6] Razminia, A., Dizaji, A. F. and Majd, V. J., Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Model., 55 (2011), pp. 11061117.
[7] Al-Saqabi, B., Boyadjiev, L. and Luchko, YU., Comments on employing the Riesz-Feller derivative in the Schrödinger equation, The European Physical Journal Special Topics, 222 (2013), pp. 17791794.
[8] Çelik, C. and Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), pp. 17431750.
[9] Chen, C. M., Liu, F., Anh, V. and Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation, SIAM J. Sci. Comput., 32(4) (2010), pp. 17401760.
[10] Chen, C. M., Liu, F., Anh, V. and Turner, I., Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term, Appl. Math. Comput., 217 (2011), pp. 57295742.
[11] Valério, D. and Costa, José Sá Da, Variable-order fractional derivatives and their numerical approximations, Signal Processing, 91 (2011), pp. 470483.
[12] Zhu, D., Kinoshita, S., Cai, D. and Cole, J. B., Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density, Phys. Rev. E, 80(5) (2009).
[13] Silva, F., Marào, J. A. P. F., Alves Soares, J. C. and Capelas De Oliveira, E., Similarity solution to fractional nonlinear space-time diffusion-wave equation, J. Math. Phys., 56 (2015), pp. 116.
[14] Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford Applied Mathematics and Computing Science Series, (1985).
[15] Sun, H. G., Chen, W., Wei, H. and Chen, Y. Q., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Euro. Phys. J. Spec. Top., 193(1) (2011), pp. 185192.
[16] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, (1999).
[17] Dong, J. and Xu, M., Solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105.
[18] Dong, J. and Xu, M., Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), pp. 10051017.
[19] Moaddy, K., Hashim, I. and Momani, S., Non-standard finite difference schemes for solving fractional-order Rössler chaotic and hyperchaotic systems, Comput. Math. Appl., 62(3) (2011), pp. 10681074.
[20] Moaddy, K., Momani, S. and Hashim, I., The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput. Math. Appl., 61(4) (2011), pp. 12091216.
[21] Moaddy, K., Radwan, A. G., Salama, K. N., Momani, S. and Hashim, I., The fractional-order modeling and synchronization of electrically coupled neuron systems, Comput. Math. Appl., 64(10) (2012), pp. 33293339.
[22] Morton, K. W. and Mayers, D. F., Numerical Solution of Partial Differential Equations, Cambridge University Press, Cambridge, (1994).
[23] Ciesielski, M. and Leszczynski, J., Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator, J. Theor. Appl. Mech., 44(2) (2006), pp. 393403.
[24] Laskin, N., Fractional quantum mechanics, Phys. Rev. E, 62 (2000), pp. 31353145.
[25] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 298 (2000), pp. 298305.
[26] Laskin, N., Fractals and quantum mechanics, Chaos, 10 (2000), pp. 780790.
[27] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108.
[28] Sweilam, N. H., Khader, M. M. and Adel, M., On the stability analysis of weighted average finite difference methods for fractional wave equation, J. Fractional Differential Calculus, 2 (2012), pp. 1725.
[29] Sweilam, N. H. and Almrawm, H. M., On the numerical solutions of the variable order fractional heat equation, Studies in Nonlinear Sciences, 2(1) (2011), pp. 3136.
[30] Sweilam, N. H., Khader, M. M. and Almarwm, H. M., Numerical studies for the variable order nonlinear fractional wave equation, FCAA., 15(4) (2012).
[31] Sweilam, N. H. and Assiri, T. A., Numerical simulations for the space-time variable order nonlinear fractional wave equation, J. Appl. Math., 2013 (2013), Article ID 586870, 8 pages.
[32] Sweliam, N. H., Nagy, A. M., Assiri, T. A. and Ali, N. Y., Numerical simulations for variable order fractional nonlinear delay differential equations, J. Fractional Calculus Appl., 6(1) (2015), pp. 7182.
[33] Sweilam, N. H. and Almajbri, T. F., Large stability regions method for the two-dimensional fractional diffusion equation, Progress in Fractional Differentiation and Applications, 1(2) (2015), pp. 123131.
[34] Lin, R., Liu, F., Anh, V. and Turner, I., Stability and convergence of a new explicit finite difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), pp. 435445.
[35] Mickens, R.E., Nonstandard Finite Difference Model of Differential Equations, World Scientific, Singapore, (1994).
[36] Mickens, R. E., Nonstandard finite difference schemes for reactions-diffusion equations, Numer. Methods Partial Differential Equations Fractals, 15 (1999), pp. 201214.
[37] Mickens, R. E., Application of Nonstandard Finite Difference Schemes, World Scientific Publishing Co. Pte. Ltd., (2000).
[38] Mickens, R. E., Nonstandard finite difference schemes for differential equations, J. Differential Equations Appl., 8(9) (2002), pp. 823847.
[39] Mickens, R. E., A nonstandard finite difference scheme for a fisher PDF having nonlinear diffusion, Comput. Math. Appl., 45 (2003), pp. 429436.
[40] Mickens, R. E., A nonstandard finite-difference scheme for the Lotka-Volterra system, Appl. Numer. Math., 45 (2003), pp. 309314.
[41] Mickens, R. E. and Washington, T. M., A Note on an NSFD Scheme for a Mathematical Model of Respiratory Virus Transmission, Journal of Difference Equations and Applications, 18(3) (2010).
[42] Herrmann, R., Fractional Calculus, An Introduction For Physicists, World Scientific Publishing Co. Pte. Ltd., (2011).
[43] Yuste, S. B., Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264274.
[44] Yuste, S. B. and Acedo, L., On an explicit finite difference method for fractional diffusion equations, Preprint at, (2003).
[45] Banerjee, S., Cole, J. B. and Yatagai, T., Calculation of diffraction characteristics of sub wave-length conducting gratings using a high accuracy nonstandard finite-difference time-domainmethod, Optical Rev., 12(4) (2005), pp. 274280.
[46] Elsheikh, S., Ouifki, R. and Patidar, K. C., A non-standard finite difference method to solve amodel of HIV-Malaria co-infection, J. Difference Equations Appl., 20(3) (2014), pp. 354378.
[47] Samko, S. G. and Ross, B., Integration and differentiation to a variable fractional order, Integral Transform and Special Functions, 1 (1993), pp. 277300.
[48] Moghadas, S., Alexander, M. and Corbett, B., A non-standard numerical scheme for ageneralized Gause-type predator-prey model, Physica D: Nonlinear Phenomena, 188(1) (2004), pp. 134151.
[49] Wang, S. and Xu, M., Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys., 48 (2007), 043502.
[50] Zhang, S., Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order, J. Frac. Calc. Anal., 4(1) (2013), pp. 8298.
[51] Zhang, S., Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), pp. 32893297.
[52] Feller, W., On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them, Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié à M. Riesz, Lund, 73, (1952).
[53] Guo, X. and Xu, M., Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 82104.
[54] Zhao, X., Sun, Z. and Em, G., Second-order approximations for variable order fractional derivatives: algorithms and applications, J. Comput. Phys., (2014). doi :10.1016/


MSC classification

Numerical Simulation for the Variable-Order Fractional Schrödinger Equation with the Quantum Riesz-Feller Derivative

  • N. H. Sweilam (a1) and M. M. Abou Hasan (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed