[1]
Atangana, A. and Cloot, A. H., Stability and convergence of the space fractional variable-order Schrödinger equation, Adv. Difference Equations, 80 (2013), doi:10.1016/j.jcp.2014.08.015.

[2]
Bibi, A., Kamran, A., Hayat, U. and Mohyud-Din, S., New iterative method for time-fractional Schrödinger equations, World J. Model. Simulation, 9(2) (2013), pp. 89–95.

[3]
Bhrawy, A. H. and Zaky, M. A., Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 78(4) (2014), doi:10.1007/s11071-014-1854-7.

[4]
Arenas, A. J., González-Parrab, G. and Chen-Charpentier, B. M., Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulation, 121 (2016), pp. 48–63.

[5]
Nagy, A. and Sweilam, N., An effcient method for solving fractional Hodgkin-Huxley model, Phys. Lett. A, 378(30) (2014), pp. 1980–1984.

[6]
Razminia, A., Dizaji, A. F. and Majd, V. J., Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Model., 55 (2011), pp. 1106–1117.

[7]
Al-Saqabi, B., Boyadjiev, L. and Luchko, YU., Comments on employing the Riesz-Feller derivative in the Schrödinger equation, The European Physical Journal Special Topics, 222 (2013), pp. 1779–1794.

[8]
Çelik, C. and Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), pp. 1743–1750.

[9]
Chen, C. M., Liu, F., Anh, V. and Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation, SIAM J. Sci. Comput., 32(4) (2010), pp. 1740–1760.

[10]
Chen, C. M., Liu, F., Anh, V. and Turner, I., Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term, Appl. Math. Comput., 217 (2011), pp. 5729–5742.

[11]
Valério, D. and Costa, José Sá Da, Variable-order fractional derivatives and their numerical approximations, Signal Processing, 91 (2011), pp. 470–483.

[12]
Zhu, D., Kinoshita, S., Cai, D. and Cole, J. B., Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density, Phys. Rev. E, 80(5) (2009).

[13]
Silva, F., Marào, J. A. P. F., Alves Soares, J. C. and Capelas De Oliveira, E., Similarity solution to fractional nonlinear space-time diffusion-wave equation, J. Math. Phys., 56 (2015), pp. 1–16.

[14]
Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford Applied Mathematics and Computing Science Series, (1985).

[15]
Sun, H. G., Chen, W., Wei, H. and Chen, Y. Q., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Euro. Phys. J. Spec. Top., 193(1) (2011), pp. 185–192.

[16]
Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, (1999).

[17]
Dong, J. and Xu, M., Solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48 (2007), 072105.

[18]
Dong, J. and Xu, M., Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), pp. 1005–1017.

[19]
Moaddy, K., Hashim, I. and Momani, S., Non-standard finite difference schemes for solving fractional-order Rössler chaotic and hyperchaotic systems, Comput. Math. Appl., 62(3) (2011), pp. 1068–1074.

[20]
Moaddy, K., Momani, S. and Hashim, I., The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput. Math. Appl., 61(4) (2011), pp. 1209–1216.

[21]
Moaddy, K., Radwan, A. G., Salama, K. N., Momani, S. and Hashim, I., The fractional-order modeling and synchronization of electrically coupled neuron systems, Comput. Math. Appl., 64(10) (2012), pp. 3329–3339.

[22]
Morton, K. W. and Mayers, D. F., Numerical Solution of Partial Differential Equations, Cambridge University Press, Cambridge, (1994).

[23]
Ciesielski, M. and Leszczynski, J., Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator, J. Theor. Appl. Mech., 44(2) (2006), pp. 393–403.

[24]
Laskin, N., Fractional quantum mechanics, Phys. Rev. E, 62 (2000), pp. 3135–3145.

[25]
Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 298 (2000), pp. 298–305.

[26]
Laskin, N., Fractals and quantum mechanics, Chaos, 10 (2000), pp. 780–790.

[27]
Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108.

[28]
Sweilam, N. H., Khader, M. M. and Adel, M., On the stability analysis of weighted average finite difference methods for fractional wave equation, J. Fractional Differential Calculus, 2 (2012), pp. 17–25.

[29]
Sweilam, N. H. and Almrawm, H. M., On the numerical solutions of the variable order fractional heat equation, Studies in Nonlinear Sciences, 2(1) (2011), pp. 31–36.

[30]
Sweilam, N. H., Khader, M. M. and Almarwm, H. M., Numerical studies for the variable order nonlinear fractional wave equation, FCAA., 15(4) (2012).

[31]
Sweilam, N. H. and Assiri, T. A., Numerical simulations for the space-time variable order nonlinear fractional wave equation, J. Appl. Math., 2013 (2013), Article ID 586870, 8 pages.

[32]
Sweliam, N. H., Nagy, A. M., Assiri, T. A. and Ali, N. Y., Numerical simulations for variable order fractional nonlinear delay differential equations, J. Fractional Calculus Appl., 6(1) (2015), pp. 71–82.

[33]
Sweilam, N. H. and Almajbri, T. F., Large stability regions method for the two-dimensional fractional diffusion equation, Progress in Fractional Differentiation and Applications, 1(2) (2015), pp. 123–131.

[34]
Lin, R., Liu, F., Anh, V. and Turner, I., Stability and convergence of a new explicit finite difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), pp. 435–445.

[35]
Mickens, R.E., Nonstandard Finite Difference Model of Differential Equations, World Scientific, Singapore, (1994).

[36]
Mickens, R. E., Nonstandard finite difference schemes for reactions-diffusion equations, Numer. Methods Partial Differential Equations Fractals, 15 (1999), pp. 201–214.

[37]
Mickens, R. E., Application of Nonstandard Finite Difference Schemes, World Scientific Publishing Co. Pte. Ltd., (2000).

[38]
Mickens, R. E., Nonstandard finite difference schemes for differential equations, J. Differential Equations Appl., 8(9) (2002), pp. 823–847.

[39]
Mickens, R. E., A nonstandard finite difference scheme for a fisher PDF having nonlinear diffusion, Comput. Math. Appl., 45 (2003), pp. 429–436.

[40]
Mickens, R. E., A nonstandard finite-difference scheme for the Lotka-Volterra system, Appl. Numer. Math., 45 (2003), pp. 309–314.

[41]
Mickens, R. E. and Washington, T. M., A Note on an NSFD Scheme for a Mathematical Model of Respiratory Virus Transmission, Journal of Difference Equations and Applications, 18(3) (2010).

[42]
Herrmann, R., Fractional Calculus, An Introduction For Physicists, World Scientific Publishing Co. Pte. Ltd., (2011).

[43]
Yuste, S. B., Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264–274.

[45]
Banerjee, S., Cole, J. B. and Yatagai, T., Calculation of diffraction characteristics of sub wave-length conducting gratings using a high accuracy nonstandard finite-difference time-domainmethod, Optical Rev., 12(4) (2005), pp. 274–280.

[46]
Elsheikh, S., Ouifki, R. and Patidar, K. C., A non-standard finite difference method to solve amodel of HIV-Malaria co-infection, J. Difference Equations Appl., 20(3) (2014), pp. 354–378.

[47]
Samko, S. G. and Ross, B., Integration and differentiation to a variable fractional order, Integral Transform and Special Functions, 1 (1993), pp. 277–300.

[48]
Moghadas, S., Alexander, M. and Corbett, B., A non-standard numerical scheme for ageneralized Gause-type predator-prey model, Physica D: Nonlinear Phenomena, 188(1) (2004), pp. 134–151.

[49]
Wang, S. and Xu, M., Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys., 48 (2007), 043502.

[50]
Zhang, S., Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order, J. Frac. Calc. Anal., 4(1) (2013), pp. 82–98.

[51]
Zhang, S., Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), pp. 3289–3297.

[52]
Feller, W., *On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them*, Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié à M. Riesz, Lund, 73, (1952).

[53]
Guo, X. and Xu, M., Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 82104.

[54]
Zhao, X., Sun, Z. and Em, G., *Second-order approximations for variable order fractional derivatives: algorithms and applications*, J. Comput. Phys., (2014). doi :10.1016/j.jcp.2014.08.015.