[1]
Zhdanov, R., Separation of variables in the nonlinear wave equation, J. Phys. A, 27 (1994), pp. L291–L297.

[2]
Lou, S. and Chen, L., Formal variable separation approach for nonintegrable models, J. Math. Phys., 40 (1999), pp. 6491–6500.

[3]
Estevez, P. G. and Qu, C., Separation of variables in a nonlinear wave equation with a variable wave speed, Theoret. Math. Phys., 133 (2002), pp. 1490–1497.

[4]
Zhang, S., Lou, S. and Qu, C., Variable separation and exact solutions to generalized nonlinear diffusion equations, Chin. Phys. Lett., 19 (2002), pp. 1741–1744.

[5]
Zhang, S., Lou, S. and Qu, C., New variable separation approach: application to nonlinear diffusion equations, J. Phys. A, 36 (2003), pp. 12223–12242.

[6]
Zhang, S. and Lou, S., Derivative-dependent functional separable solutions for the KdV-type equations, Phys. A, 335 (2004), pp. 430–444.

[7]
Lou, S. and Lu, J., Special solutions from the variable separation approach: the Davey-Stewartson equation, J. Phys. A, 29 (1996), pp. 4209–4215.

[8]
Ying, J. and Lou, S., Multilinear variable separation approach in (3+1)-dimensions: the Burgers equation, Chin. phys. Lett., 20 (2003), pp. 1448.

[9]
Tang, X. and Lou, S., A variable separation approach to solve the integrable and nonintegrable models: coherent structures of the (2+1)-dimensional KdV equation, Commun. Theor. Phys., 38 (2002), pp. 1–8.

[10]
Calogero, F. and Degasperis, A., Nonlinear evolution equations solvable by the inverse spectral transform I, Nuovo Cimento B, (11)(32) (1976), pp. 201–242.

[11]
Calogero, F. and Degasperis, A., Nonlinear evolution equations solvable by the inverse spectral transform II, Nuovo Cimento B, (11)(39) (1977), pp. 1–54.

[12]
Bogoyavlenskii, O., Overturning solitons in new two-dimensional integrable equations, Math. USSR-Izv., 34 (1990), pp. 245–259.

[13]
Bogoyavlenskii, O., Breaking solitons III, Math. USSR-Izv., 36 (1991), pp. 129–137.

[14]
Schiff, J., Painlevé Transendent, Their Asymptotics and Physical Applications, Plenum, New York, 1992, pp. 393.

[15]
Bekir, A., Painlevé test for some (2+1)-dimensional nonlinear equations, Chaos Solitons Fractals, 32 (2007), pp. 449–455.

[16]
Fan, E. and Chow, K., Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation, J. Math. Phys., 52 (2011), pp. 1–10.

[17]
Alagesan, T., Chung, Y. and Nakkeeran, K., Painlevé test for the certain (2+1)-dimensional nonlinear evolution equations, Chaos Solitons Fractals, 26 (2005), pp. 1203–1209.

[18]
Yong, X., Zhang, Z. and Chen, Y., Bäcklund transformation, nonlinear superposition formula and solutions of the Calogero equation, Phys. Lett. A, 372 (2008), pp. 6273–6279.

[19]
Gao, Y. and Tian, B., New family of overturning soliton solutions for a typical breaking soliton equation, Comput. Math. Appl., 30 (1995), pp. 97–100.

[20]
Yan, Z. and Zhang, H., Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation, Comput. Math. Appl., 44 (2002), pp. 1439–1444.

[21]
Xian, D., Symmetry reduction and new non-traveling wave solutions of (2+1)-dimensional breaking soliton equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), pp. 2061–2065.

[22]
Tian, B., Zhao, K. and Gao, Y., Symbolic computation in engineering: application to a breaking soliton equation, Internat. J. Eng. Sci., 35 (1997), pp. 1081–1083.

[23]
Fan, E. and Zhang, H., A note on the homogeneous balance method, Phys. Lett. A, 246 (1998), pp. 403–406.

[24]
Lü, Z., Duan, L. and Xie, F., Cross soliton-like waves for the (2+1)-dimensional breaking soliton equation, Chin. Phys. Lett., 27 (2010), pp. 1–3.

[25]
Feng, Q. and Zheng, B., Exact traveling wave solution for the (2+1) dimensional breaking Soliton equation, Proceedings of the 2010 American Conference on Applied Mathematics, WSEAS, 2010, pp. 440–442.

[26]
Zhao, Z., Dai, Z. and Han, S., The EHTA for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), pp. 4306–4310.

[27]
Hirota, R. and Satsuma, J., N-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Japan, 40 (1976), pp. 611–612.

[28]
Clarkson, P. and Mansfield, E. L., On a shallow waterwave equation, Nonlinearity, 7 (1997), pp. 975–1000.