[1]Liao, S., Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC, 2003, pp. 99–102.

[2]Noor, N. F. M. and Hashim, I., Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady stretching surface, Int. J. Heat Mass Transf., 53(9-10) (2010), pp. 2044–2051.

[3]Hayat, T. and Qasim, M., Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis, Int. J. Heat Mass Transf., 53(21-22) (2010), pp. 4780–4788.

[4]Qasim, M. and Noreen, S., Falkner-Skan flow of a Maxwell fluid with heat transfer and magnetic field, Int. J. Eng. Math., (2013), ID 692827.

[5]Nadeem, S. and Saleem, S., Unsteady mixed convection flow of a rotating second-grade fluid on a rotating cone, Heat Transf. Asian Res., (2013), DOI: 10.1002/htj.21072. [6]Abbasbandy, S., Homotopy analysis method for heat radiation equations, Int. Commun. Heat Mass Transf., 34(3) (2007), pp. 380–387.

[7]Alsaadi, F. E., Shehzad, S. A., Hayat, T. and Monaquel, S. J., Soret and dufour effects on the unsteady mixed convection flow over a stretching surface, J. Mech., 29(4) (2013), pp. 623–632.

[8]Ellahi, R., Effects of the slip boundary condition on non-Newtonian flows in a channel, Commun. Nonlinear Sci. Numer. Simul., 14(4) (2009), pp. 1377–1384.

[9]Nadeem, S. and Haq, R. U., Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions, J. Comput. Theoretical Nanosci., 11(1) (2014), pp. 32–40.

[10]Nadeem, S. and Hussain, S. T., Flow and heat transfer analysis ofWilliamson nanofluid, Appl.Nanosci., (2013), DOI: 10.1007/s13204-013-0282-1. [11]Abdulaziz, O., Noor, N. F. M. and Hashim, I., Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates, Int. J. Numer. Methods Eng., 78(7) (2009), pp. 817–827.

[12]Marinca, V. and Herisanu, N., Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass Transf., (35) (2008), pp. 710–715.

[13]Marinca, V., Herisanu, N. and Nemes, I., Optimal homotopy asymptotic method with application to thin film flow, Central Euro. J. Phys., (6) (2008), pp. 648–653.

[14]Liao, S., An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), pp. 2003–2016.

[15]Zhao, Y., Lin, Z. and Liao, S., A modified homotopy analysis method for solving boundary layer equations, Appl. Math., 4(1) (2013), pp. 11–15.

[16]Shehzad, S. A., Hayat, T. and Qasim, M., Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction, Brazilian J. Chemical Eng., 30(1) (2013), pp. 187–195.

[17]Hayat, T., Qasim, M. and Mesloub, S., MHD flow and heat transfer over permeable stretching sheet with slip conditions, Int. J. Numer. Methods Fluids, 66(8) (2011), pp. 963–975.

[18]Nadeem, S. and Saleem, S., Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame, J. Taiwan Institute Chemical Eng., 44(4) (2013), pp. 596–604.

[19]Ellahi, R. and Riaz, A., Analytical solutions for MHD flow in a third-grade fluid with variable viscosity, Math. Comput. Model., 52(9-10) (2010), pp. 1783–1793.

[20]Xu, H. and Liao, S., Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate, J. Non-Newtonian Fluid Mech., 129 (2005), pp. 46–55.

[21]Liao, S. and Campo, A., Analytic solutions of the temperature distribution in Blasius viscous flow problems, J. Fluid Mech., 453 (2002), pp. 411–425.

[22]Liao, S., Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg, 2012.

[23]Nadeem, S., Hussain, S. T. and Lee, C., Flow of a Williamson fluid over a stretching sheet, Brazilian J. Chem. Eng., 30(3) (2013), pp. 619–625.

[24]Dapra, I. and Scarpi, G., Perturbation solution for pulsatile flow of a non-NewtonianWilliamson fluid in a rock fracture, Int. J. Rock Mech. Mining Sci., 44 (2007), pp. 271–278.

[25]Mastroberardino, A., Mixed convection in viscoelastic boundary layer flow and heat transfer over a stretching sheet, Adv. Appl. Math. Mech., 6 (2014), pp. 359–375.

[26]Matinfar, M., Saeidy, M. and Vahidi, J., Application of homotopy analysis method for solving systems of volterra integral equations, Adv. Appl. Math. Mech., 4(1) (2012), pp. 36–45.

[27]Fan, T. and You, X., Optimal homotopy analysis method for nonlinear differential equations in the boundary layer, Numer. Alg., 62(2) (2013), pp. 337–354.

[28]Morrison, D. D., Riley, J. D. and Zancanaro, J. F., Multiple shooting method for two-point boundary value problems, Commun. ACM, 5 (1962), pp. 613–614.

[29]Keller, H. B., Numerical solution of two point boundary value problems, Society Indus. Appl. Math., 24 (1976).

[30]Makinde, O. D., Khan, W. A. and Khan, Z. H., Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat Mass Transfer, 62 (2013), pp. 526–533

[31]Khan, W. A., Khan, Z. H. and Rahi, M., *Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary*, Appl. Nanosci., (2013) DOI: 10.1007/s13204-013-0242-9. [32]Pavlov, K. B., Magnetohydrodynamic flow of an impressible viscous fluid caused by deformation of a surface, Magnitnaya Gidrodinamika, 4 (1974), pp. 146–147.

[33]Liao, S., On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J. Fluid Mech., 488 (2003), pp. 189–212.